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Preface

The primary goal of this research was to develop an accurate model to analyze an

aperture fed stacked-patch microstrip antenna. The limited bandwidth performance of

microstrip antennas has been a major impediment to their wider application and new de-

signs are constantly being explored to solve this problem. Both aperture fed and stacked

patch antennas have been investigated independently and shown promising improve-

ments in bandwidth performance. I hope that a combination of these designs will provide

even better bandwidth characteristics.

I chose a full-wave analysis based on the mixed potential integral equations

(MPIE) for the basis of this model. The model provides a complete description of the

near-fields, including surface waves, of the antenna. The Green's functions are calculat-

ed and expressed as Sommerfeld integrals. Several numerical techniques to solve the in-

tegrals are developed and tested. All algorithms are shown to provide accurate and effi-

cient solutions. When used with the methods of moments, the results of this research

should be useful to accurately analyze a stacked-patch antenna.

I would like to thank my advisor, Maj Harry Barksdale, for his help and

enthusiasm. It's always easier to work hard on a project when others show an active in-

terest in your efforts. I would also like the thank the members of my thesis committee,

Capt Gregory Warhola and Capt Philip Joseph for their helpful inputs. I am extremely

indebted to Dr. Juan Mosig and Dr. Fred Gardiol, their published works taught me

virtually everythirg I know about microstrip antennas. I must also thank Dr. David

Pozar for providing the original idea from which this research grew. Finally, I would n For

like to thank my wife Connie, for somehow finding it in her heart to stay married to me

these last eighteen months when I spent more time with my computer than with her. -a"d10

James B. Nazar
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Notation

bA12  Magnetic vector potential. Boldface defines this as a vector quantity. The su-
perscript b signifies region b. The number 12 in the subscript defines this as
the vector potential in dielectric lb for a source on interface 2b.

Ap Aperture

a1 , b1  x and y dimensions of magnetic charge cells on the aperture.

a2 , b2  x and y dimensions of electric charge cells on interface 2b (patch 1).

a3 , b3  x and y dimensions of electric charge cells on interface 3b (patch 2).

af, bf x and y dimensions of electric charge cells on the feedline.

bla Thickness of dielectric la.

bIb Thickness of dielectric lb.

b2b Total thickness of dielectrics lb and 2b.

Cli Observer cell on the aperture, i is an index variable.

C2i Observer cell on interface 2b (patch 1).

C3i Observer cell on interface 3b (patch 2).

Cfi Observer cell on the feedline.

[Cij2 ]  N1 x Nf sub-matrix used to calculate Htan in the i cells on the ground plane

due to electric sources in the j cells on the feedline.

[CX211 Nf x N, sub-matrix used to calculate Etan in the i cells on the feedline due to

magnetic sources in thej cells on the aperture.

[C~12] N1 x N2 sub-matrix used to calculate Htan in the i cells on the ground plane

due to electric sources in thej cells on interface 2b (patch 1).

[Cb13]  N1 x N3 sub-matrix used to calculate Htan in the i cells on the ground plane

due to electric sources in the j cells on interface 3b (patch 2).
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Notation

[Ci21]  N2 x N1 sub-matrix used to calculate Etan in the i cells on interface 2b (patch

1) due to magnetic sources in thej cells on the aperture.

Cij N3 x N1 sub-matrix used to calculate Etan in the i cells on interface 3b (patch

2) due to magnetic sources in the j cells on the aperture.

E Electric field vector.

EFIE Electric Field Integral Equation

F Electric vector potential.
GbXX

GA32 Green's function used to calculate contribution to electric field from electric
surface current source. Superscript b signifies region b, xx represents contri-
bution to x-directed (first x) electric field from x-directed (second x) current
source. The number 32 in the subscript defines this as the contribution to the
electric field on interface 3b due to a source on interface 2b.

==b
GE21 Green's function used to calculate contribution to electric field from magnetic

surface current source. The double overbar defines this quantity as a dyadic.

GI2 Green's function used to calculate contribution to magnetic field from electric
surface current source.

bxXGF11 Green's function used to calculate contribution to magnetic field from
magnetic surface current source.

b
Gq 32 Green's function used to calculate contribution to electric field from electric

surface charge.

bGm' 1 Green's function used to calculate contribution to magnetic field from mag-
netic surface charge.

H Magnetic field vector.

Hn )  Hankel function of the second kind, order n.

HED Horizontal Electric Dipole

HMD Horizontal Magnetic Dipole

Imaginary number '7[
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Notation

J2 Electric surface current at interface 2b.

J3 Electric surface current at interface 3b.

Jf Scattered electric current on the feedline.

Jinc Incident electric current on the feedline.

in Bessel function of first kind, order n.

kIb Complex wave number for dielectric lb.

M1  Magnetic surface current on the ground plane.

M1 Magnetic surface current on the ground plane in region a.

M Magnetic surface current on the ground plane in region b.

MPIE Mixed Potential Integral Equation

N1  Total number of current cells the aperture is divided into.

N2  Total number of current cells patch 1 (interface 2b) is divided into.

N3  Total number of current cells patch 2 (interface 3b) is divided into.

NA Not Applicable

Nf Total number of current cells the feedline is divided into.

P1 Patch 1

P2 Patch 2

PV Denotes the Cauchy principle value of an integral with a simple pole.

q Electric surface charge.

qm Magnetic surface charge.
R Radial distance between source and observer positions (does not include z-

component of separation).

S lj Source current cell on the aperture, j is an index variable.
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Notation

S2j Source current cell on interface 2b (patch 1).

S3j Source current cell on interface 3b (patch 2).

Sfj Source current cell on the feedline.

tb Thickness of dielectric layer 2b (b2b - bib).

T lj Vector rooftop basis function associated with current source cell S lj"

V Electric scalar potential.

Vq Electric scalar potential for an electric point charge.

Vm Magnetic scalar potential.

Vmq Magnetic scalar potential for a magnetic point charge.
Sm

x, y, z Unit vectors for rectangular coordinate system.

[Yll] N1 x N1 sub-matrix used to calculate Htan in the i cells on the ground plane

due to magnetic sources in the j cells on the ground plane.
[Za22j Nf × Nf sub-matrix used to calculate Etan in the i cells on the feedline due to

electric sources in thej cells on the feedline.

[Z22 N2 x N2 sub-matrix used to calculate E tan in the i cells on interface 2b (patch

1) due to electric sources in thej cells on interface 2b.

[423 N2 x N3 sub-matrix used to calculate Etan in the i cells on interface 2b (patch

1) due to electric sources in thej cells on interface 3b (patch 2).

[4321 N3 x N2 sub-matrix used to calculate Etan in the i cells on interface 3b (patch

2) due to electric sources in thej cells on interface 2b (patch 1).

[4i33] N3 x N3 sob-matrix used to calculate Etan in the i cells on interface 3b (patch
2) dure to electric sources in thej cells on interface 3b (patch 2).
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Notation

[Xj b2  Column vector containing the amplitudes of the electric current elements on
the conductor at interface 2b (patch 1).

accbj Column vector containing the amplitudes of the electric current elements on
the conductor at interface 3b (patch 2).

[i c Column vector containing the amplitudes of the reflected electric current
elements on the feedline.

aojnc]  Column vector containing the amplitudes of the incident electric current
elements on the feedline.

[ c41 Column vector containing the amplitudes of the equivalent magnetic current
elements on the aperture.

V Del operator in transverse coordinates (x, y or p. 4)

Clb Permittivity of dielectric lb, assumed to be real for this analysis.

Cb12 Ratio of permittivitys of dielectric lb and 2b (unitless).

X c Critical point where the asymptotic approximation of the integrand in the
Green's function can be used.

X p Location of pole on real axis for integrands in the Green's functions.

Ij Two dimensional pulse doublet basis function associated with electric surface
charges in source cell S lj

p, p' Radial position vectors. Unprimed quantity represents observer position and
primed quantity represents source position.

p, 4, z Unit vectors for cylindrical coordinate system.

9lb Permeability of dielectric lb, assumed to be real for this analysis.

'b 12 Ratio of permeabilitys of dielectric lb and 2b (unitless).
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Notation

(0 Radial frequency.

10c  Radial cut-off frequency for first TE surface wave mode in either region.

Angle between current direction and direction to observer point.

- Approximately equal

* Multiply
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GREEN'S FUNCTIONS FOR A THEORETICAL MODEL OF AN
APERTURE FED STACKED-PATCH MICROSTRIP ANTENNA

I. Introduction

The concept of microstrip antennas was first proposed by Deschamps back in

1953 [1]. However, it was not until the early 1970's that practical microstrip antennas

were fabricated, as better theoretical models and photo-etch techniques for copper or

gold-clad dielectric substrates with different dielectric constants, low loss tangents, and

attractive thermal and mechanical properties were developed. Microstrip antennas offer

numerous advantages such as low cost, ease of construction, thin profile, and modular

design. They can easily be integrated into the skin of an aircraft or missile without

degrading the aerodynamics of the vehicle. Extensive research has continued up to the

present day to improve microstrip antennas and integrate them into new applications.

1.1 Definition

A microstrip antenna is composed of a conducting strip radiator separated from a

ground plane by a dielectric substrate. The input to the antenna patch is usually supplied

by a stripline or coaxial probe (see Figure 1 - 1). The antenna patch conductors are

normally constructed of copper or gold and can assume virtually any shape, but are

usually rectangular or circular shaped to simplify analysis and performance predictions.

For best performance, the relative dielectric constant of the substrate, er' should be low

(Er = 2.5) to enhance the fringe fields which account for the radiation (1].

1.1.1 Advantages and Disadvantages. Microstrip antennas have many

advantages over conventional antennas and can be used in several applications over a

- 1-



I. Introduction

Antenna Patch Antenna Patch

Er

Coaxial Ground Microstp Ground
Feed Plane Feed Plane

(a) (b)

Figure 1 - 1 Microstrip antennas with (a) coaxial feed and (b) microstrip feed.

frequency range of approximately 100 MHz to 50 GHz. A few of the major advantages

of microstrip antennas are:

" lightweight, low volume, low profile planar configurations which can be
made conformal

* low fabrication cost; readily amenable to mass production

" can be made thin; hence, they do not perturb the aerodynamics of host
aerospace vehicles

" the antennas may be easily mounted on missiles, rockets and satellites without
major alterations

" the antennas have low scattering cross section

• linear and circular (left hand or right hand) polarizations are possible with
simple changes in feed position

* dual frequency antennas easily made

* no cavity backing required

" microstrip antennas are compatible with modular designs (Solid state devices
such as oscillators, amplifiers, variable attenuators, switches, modulators,
mixers, phase shifters etc. can be added directly to the antenna substrate
board)

* feed lines and matching networks are fabricated simultaneously with the
antenna [l)

-2-



I. Introduction

Some of the disadvantages of microstrip antennas are:

" narrow bandwidth

• loss, hence somewhat lower gain

" most microstrip antennas radiate into a half plane

* practical limitations on the maximum gain (= 20 dB)

" poor endfire radiation performance

" poor isolation between the feed and the radiating elements

* possibility of exciting surface waves

• lower power handling capability I]

Narrow bandwidth severely limits the applications of microstrip antennas. The

bandwidths of the microstrip antennas shown in Figure 1 - 1 are typically 1-5% of the

resonant frequency. Bandwidth can be increased by increasing the thickness of the

substrate between the ground plane and the antenna; but loss, radiation, and impedance

mismatch problems arise with the microstrip or coaxial feeds that offset any bandwidth

gains [1].

1.2 Problem Statement

By electromagnetically coupling a microstrip feed on a separate substrate to the

microstrip antenna (Patch 1) through an aperture in the ground plane (see Figure 1 - 2),

the substrate thickness can be increased to improve the bandwidth while avoiding the

above mentioned problems. The addition of a parasitic patch (Patch 2) overlaying the

antenna patch provides additional bandwidth enhancement as well as additional design

control over the antenna radiation pattern.

-3-



I. Introduction

Patch 2 @ 3b' 93b (free space) d2b

C2b, 92b

interface 2b
PC 1 @I 

"T-

Ground Plane b
with Aperture @ lb
interface I I

C a , 9 a - 0 T
Microstrip bla
Feed @ (f ree space)
interface 2a C2a' '2a

Figure 1 - 2 Aperture coupled patch antenna with parasitic patch.

1.3 Research Objectives

The main goal of this research is to develop a mathematical model suitable to an-

alyze an aperture fed stacked-patch microstrip antenna as depicted in Figure 1 - 2. To

fully describe the near-field and surface wave characteristics, the various vector and sca-

lar potentials for infinitesimal sources embedded in a stratified media are evaluated to

produce a series of Green's functions. The Green's functions are in the form of Sommer-

feld integrals and several different numerical techniques are developed to completely

solve them. A moment methods approach is then proposed to solve for the various cur-

rents and potentials of the antenna. These results will allow the calculation of the

resonant frequency, input impedance and VSWR of the antenna and determine the

bandwidth.

-4-



1. Introduction

1.4 Research Questions

Answers to following questions will be found:

1) What are the Green's functions necessary to solve for the various currents of

the antenna?

2) What are the mathematical characteristics of the integrands in the Green's

functions?

3) How can the Green's functions be evaluated numerically?

4) What methods can be used to reduce computational time?

5) How can the solutions of the Green's functions be used in a moments

method solution for the currents of the antenna?

1.5 Scope and Limitations

To make the exact mathematical analysis of the microstrip antenna shown in

Figure 1 - 2 tractable, certain restrictions are made. Each dielectric layer is isotropic,

homogeneous, and lossless. The dielectric layers and ground plane are considered infi-

nite sheets. The ground plane and antenna patch conductors are infinitely thin and

perfectly conducting. The dielectric layers have finite thickness. Expressions are found

for all Green's functions required in the integral equations used to determine the electric

and equivalent magnetic currents of the antenna. The Green's functions consist of one to

three integrals that cannot be evaluated analytically. Only five Green's functions are

explicitly evaluated to demonstrate the various numerical integration techniques neces-

sary zo handle the different characteristics of the integrands. These techniques can then

be applied to all other Green's functions. A procedure for applying a moments method

solution of the currents of the antenna is only described in this paper, no actual computa-

tions are made.

-5-



1. Introduction

1.6 Thesis Organization

The remainder of this document is organized in the following manner. Chapter II

reviews several current articles on aperture fed microstrip antennas and methods for full-

wave analysis of microstrip antennas. Chapter III describes the solution process used to

obtain the Green's functions and the moments method procedure to solve for the

currents. The characteristics of the integrands in the Green's functions are explored in

Chapter IV and the necessary numerical integration techniques are developed. The con-

clusions and recommendations of this research are discussed in Chapter V. There are

also several appendices that cover background information, some of the more tedious

calculations, and the various computer programs developed during this research.

-6-



II. Literature Review

This literature review outlines current research on microstrip antennas. Eight

current reports on aperture fed microstrip antennas and the means used to analyze

microstrip antennas will be summarized. Since an exact solution of the currents and

electromagnetic fields of the proposed antenna is most desirable, only articles dealing

with aperture fed microstrip antennas and the full-wave analysis of microstrip antennas

will be reviewed.

2.1 Aperture Fed Microstrip Antennas

D. M. Pozar [2] proposed a new method of feeding a microstrip antenna where a

microstrip antenna on one substrate is fed by a stripline on a parallel substrate through an

aperture in the ground plane. Pozar notes three advantages to be gained from an aperture

fed configuration:

(i) The configuration is well suited for monolithic phased arrays, where
active devices can be integrated on, for example, a gallium arsenide
substrate with the feed network, and the radiating elements can be located
on an adjacent (low-dielectric constant) substrate, and coupled to the feed
network through apertures in the ground plane separating the two
substrates. The use of two substrates thus avoids the deleterious effect of
a high-dielectric-constant substrate on the bandwidth and scan
performance of a printed antenna array.

(ii) No radiation from the feed network can interfere with the main
radiation pattern, since a ground plane separates the two mechanisms.

(iii) No direct connection is made to the antenna elements, so problems
such a large probe self reactances or wide microstripline (relative to patch
size), which are critical at millimetre-wave frequencies, are avoided. [2]

Pozar used a simple cavity model for the patch antenna and small-hole coupling theory to

design a prototype. Although he did not cite specific bandwidth performance results for

-7-



II. Literature Review

the prototype antenna, he did report that the antenna produced a normal radiation pattern.

Sullivan and Schaubert [3] continued with Pozar's ideas by developing an exact

mathematical model for the aperture fed microstrip antenna with a single antenna patch.

They developed coupled integral equations by using the Green's functions for the

grounded dielectric slabs so their analysis included all coupling effects and the radiation

and surface waves of both substrates. The analysis was eased by invoking the

equivalence principle, closing off the aperture, and replacing it with magnetic surface

currents M s just above and below the ground plane (see Figure 2 - 1). The continuity of

/J

C i p
Region b

Lb

Fa

Region a _

Co 0 Jinc + if

(a)

£ CoJp

Region b - M W

L bz

M s
La s

Region a __

r.o Jinc + Jf

(b)

Figure 2 - 1 Antenna and feed with incident and induced currents. (a) Original problem. (b)
Equivalent problem 131.

the tangential electric field through the aperture was maintained by making the magnetic

-8-



I. Literature Review

current above the ground plane equal to the negative of the magnetic current below it.

With the space below the ground plane (z < 0) denoted as region a and the space above

the ground plane (z > 0) denoted as region b, the electric and magnetic fields in each

region were written as a summation of fields due to the various currents:

at ' Ea (Jinc) + Ea (Jf) + Ea (M)
Ha0 t = Ha (Jinc) + Ha (Jf) + Ha (Ms)

Eb° t = Eb (Jp)- Eb (M,)

Hb t =Hb (Jp)- Hb (Ms)

where the known incident current distribution on the feedline is Jinc' the scattered

current on the feedline is Jf, and the current on the patch is J The fields on the right

hand side of the above equations are generated by the specified current radiating in the

presence of a dielectric slab and ground plane with the aperture shorted.

Coupled integral equations are obtained for the three unknown currents Jf, Jp,

and Ms by enforcing boundary conditions. A Galerkin moment method is then used to

solve the integral equations. The solution is simplified by assuming the electric currents

on the antenna patch and stripline are confined to the y- direction. The aperture is

assumed electrically short and the magnetic current is confined to the x- direction (out of

the page in Figure 2 - 1). The resulting formula for M s is not quite an exact solution

because the formula requires one parameter to be determined from empirical data. The

authors compared calculated to measured results for input impedance for several different

combinations of aperture position, dielectric constant and dielectric thickness with good

agreement [3].

The most recent results reported in the literature for aperture fed microstrip

antennas are from Tsao et al [4]. They constructed and tested an aperture fed stacked-

patch microstrip antenna and obtained 19.2% bandwidth for input VSWR < 2 at 3.9 GHz.

They also developed a two-input-port feed network to produce either dual circular or dual

-9-



It. Literature Review

linear polarization modes, again with approximately 20% bandwidth. Although the

authors did not present an exact analysis for their antenna, their results prove that an

aperture fed stacked-patch microstrip antenna can yield higher bandwidth than a more

conventional single patch microstrip antenna.

2.2 Analysis of Microstrip Antennas

To find the electromagnetic fields radiated by a microstrip antenna, the integral

equations for the currents on the feed network and antenna patch must be solved first.

Mosig describes in detail the mixed potential integral equation (MPIE) as applied to

microstrip structures that could be very useful for solving these currents [5]. He uses

Green's functions associated with the scalar and vector potentials which are calculated by

using stratified media theory and are expressed as Sommerfeld integrals. The MPIE is

numerically stable and can be solved with efficient algorithms. The MPIE is solved in

the space domain, rather than the spectral domain, to help keep a good physical insight to

the problem. The author presents several different basis and test functions that can be

used for the method of moments solution of the integral equations. The solution rate of

convergence for the different basis and test functions are compared to derive the

optimum combination for fastest convergence. The MPIE includes contributions by both

surface waves and radiation. Multilayered substrates and multiple conductors (stacked

patches) can be handled by making suitable modifications of the Green's functions and

increasing the number of unknowns.

An earlier paper by Mosig and Gardiol provides additional insight into using the

MPIE for the solution of the microstrip antenna problem (6]. In this paper, the authors go

into the precise details of the formulation of the spatial Green's functions used in the

MPIE. They also derive approximations for the near- and far-field solutions for the

microstrip antenna and point out the significance of surface wave effects in the solution.

-10-



II. Literature Review

Because the antenna studied in this thesis will consist of several different

dielectric layers, analytical techniques applicable to stratified media will be needed.

Although Mosig's paper indicates that the MPIE can be used for stratified media, he

derives the Green's functions using only the horizontal electric dipole (HED) and point

charge, and does not explicitly derive the Green's functions for stratified media [5].

Kong develops integral expressions for the electric and magnetic fields for both the HED

and horizontal magnetic dipole (HMD) in both infinite and semi-infinite stratified media

[7]. The Green's functions for stratified media for both the RED and HMD can be easily

extracted from these expressions. The Green's function for the HMD is needed to

calculate the fields radiated by the magnetic currents used to close off the aperture in the

ground plane of the antenna.

Nirod and Pozar (81 developed a method to calculate the two-dimensional Green's

function in the spectral domain for a current element between any two layers of a

multilayer substrate. Their solution is obtained by solving a "standard" form containing

the current element between any two layers and using an iterative algorithm on the "stan-

dard" form to find the solution in any other layer. Their analysis draws the following

conclusions:

1) The numerical solution of the Green's function for a point different from the

plane of the current element exciting it, converges much faster than for a point in the

same plane as the current element.

2) The numerical solution converges faster for thicker layers.

3) The numerical solution for a structure with a ground plane converges more

slowly than a structure without a ground plane. [8]

Alex6poulos and Jackson report the effects of multiple dielectric layers on

microstrip antennas [9]. Using a superstrate cover over a microstrip antenna on a

grounded substrate, they derive the integral expressions for the electromagnetic fields.
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They then show how substrate-superstrate resonance conditions can be established to

maximize antenna gain, radiation resistance, and radiation efficiency. They also develop

criteria for nearly omnidirectional H and E plane patterns. The relationships of

dielectric constants, dielectric thicknesses, and antenna placement within the dielectric

layers on gain, radiation resistance, and radiation efficiency are presented graphically and

in great detail.

2.3 Summary

Microstrip antenna research continually produces more versatile and useful

designs. The work by Pozar, Sullivan and Schaubert, Tsao et al., and Alex6poulos and

Jackson has proven that aperture fed single and stacked-patch microstrip antennas can

produce greater bandwidth performance and offer additional cortrol over the radiation

patterns compared to microstrip or coaxial fed antennas. Analytical methods developed

by Sullivan and Schaubert, Mosig and Gardiol, Kong, and Nirod and Pozar can be used

to calculate rigorous solutions for microstrip antennas in stratified media. By applying

these exacting analytical methods to aperture fed .acked-patch microstrip antennas, it

will be possible to define frequency, bandwidth, and radiation characteristics and develop

rules and criteria for the efficient design of these antennas.
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3.1 Overview of Analysis

The goal of this analysis is to find the induced electric currents and charge distri-

butions on the antenna patches and feedline and equivalent magnetic current and charge

distribution over the aperture for a given incident current on the feedline. These

distributions can then be used to determine the resonant frequency, input impedance,

bandwidth, radiation pattern and other operating characteristics of the aperture fed

stacked-patch microstrip antenna. The various currents of the antenna are depicted in

Figure 3 - 1. The electric currents are designated as Jinc for the incident current on the

feed line; Jf is the scattered current on the feedline; J2 is the current on the patch be-

tween the first and second dielectric layer; and J3 is the current on the patch between the

second dielectric layer and free space. By using the equivalence principle [10] the aper-

ture can be closed off and replaced by magnetic surface currents M1 just above and

below the ground plane. Although Figure 3 - 1 shows the electric currents in the x-direc-

tion and magnetic current in the y-direction, this analysis includes all currents in the x-y

plane of each conductor and the aperture. Continuity of the tangential electric field

through the aperture is maintained by making the magnetic current above the ground

equal to the negative of the magnetic current below [3]. The total electric and magnetic

fields in region a and region b due to the various currents are given by

Ea0 t  Ea (Jinc)+ Ea (Jf)+ E, (Mi) (3- 1)

Hatot = Ha (Jinc) + H, (Jf) + H, (M) (3-2)

Etot= Eb (J2) + Eb (3)- Eb (MI) (3-3)

Hb° t = Hb (J2) + Hb (J3)- Hb (MI) (3-4)
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I
3b ' l3b J 3

~~ b2 ,

Regin b 2b, "~2b b

elb, A'1b

E la, P'ia

Region ab

E 2a, P2a inc + Jf w~

(a)

z
E3b, 93b J3 b

Region b £2b, 92b 2 b

£b.I.91b 0 Mb1 M 1

J. + L a MB 
w

Er2a 112a inc bia

(b)

Figure 3 - 1 Stacked patch antenna and feed with incident and induced currents. (a)
Original problem. (b) Equivalent problem.

The fields of the problem are expressed using the mixed potential integral equa-

tion (MPIE) and are solved in the space domain. The method of using both vector and

scalar potentials (mixed potentials) to solve scattering and antenna problems is discussed
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by Harrington [11] and applied specifically to microstrip antennas by Mosig [5]. The

electric fields due to the electric and magnetic sources, respectively, are derived from the

following scalar and vector potentials

E =-jcoA -VV (3- 5)
E=- 1 VxF(36

E (3 -6)

where A is the magnetic vector potential, V is the electric scalar potential, F is the elec-

tric vector potential, and j = -T. The magnetic fields are derived from

H = V xA

(3-7)

H = -jo)F -VVm (3-8)

where Vm is the magnetic scalar potential. Equations (3 - 5) and (3 - 7) assume only

electric sources are present, and (3 - 6) and (3 - 8) assume only magnetic sources are

present. The vector and scalar potentials are in turn expressed using the corresponding

Green's functions as superposition integrals of the charge and current densities

A(p) = JG A(pp'). J(p') ds' -9)

V4p) = f" G4pp') q(p') s'
is, (3- 10)

F(p) = f" Z(plp') M(p') ds'
is. (3 - 11)

Vm4P)f, Gm(pip') q(p') ds' (3- 12)

where the dot in (3 - 9) and (3 - 11) indicates a dot product of the dyadic Green's func-

tion with the vector surface current. The vectors p and p' represent the radial positions
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of the observer and source points, respectively, from the z-axis. The current and charge

densities are related through the continuity equations

V. J +joq =0 (3- 13)

V. M + joxqm = 0 (3- 14)

Equations (3 - 9) through (3 - 14) are used in (3 - 5) to (3 - 8) to describe the elec-

tromagnetic fields in the different regions of the antenna. Four coupled integral equa-

tions are then obtained for the four unknown currents Jf, M1 , J 2 and J 3 by enforcing the

boundary conditions of Table 3 - 1. The other boundary conditions of the antenna

structure (Etan = 0 on the ground plane, conditions on the normal fields at the dielectric

interfaces, etc.) are incorporated in the construction of the Green's functions.

Table 3 - I MPIE Boundary Conditions

1) Etan = 0 on antenna patch 1.

2) Etan = 0 on antenna patch 2.

3) Etan = 0 on the feedline.

4) Htan is continuous through the aperture.

The first step in developing a mathematical model for the antenna is to calculate

the vector potentials from which the various Green's functions are constructed. The

MPIEs satisfying the conditions of Table 3 - 1 are then formulated and a moments meth-

od that could be used to solve the current and charge distributions is described. Since no
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approximations are made, this solution would completely describe the near-fields of the

antenna. A time dependence of ej O)t is assumed throughout this analysis.

3.2 The Vector and Scalar Potentials

By definition, the Green's functions are potentials created by a unit source which

is an electric or Hertz dipole horizontally located within one of the microstrip surfaces or

the ground plane. With a linear system, the superposition principle applies and the po-

tentials of any finite source can be determined by representing the source as a continuum

of elementary dipoles and then integrating the contributions of all the elementary sources

[12]. Mosig and Gardiol thoroughly develop the theory and method of Green's functions

for arbitrary microstrip structures in [61 and [12]. However, their Green's functions are

constructed for only a single dielectric layer antenna, with only electric sources on the di-

electric-air interface, and dielectric permeability fixed at the free-space value. These re-

sults are extended to accommodate the needs of this research by constructing Green's

functions for a structure with two dielectric layers with different permittivities and per-

meabilities; with electric sources at the dielectric-dielectric and dielectric-air interfaces;

and with equivalent magnetic sources at the ground plane-dielectric interface.

3.2.1 HED at interface 2b. The analysis of this structure is begun by determining

the fields created by an RED along the x-axis at the interface of dielectric lb and dielec-

tric 2b (see Figure 3 - 2) having a unit moment Idx = I A m. The resulting Green's

functions can then be used in (3 - 9) and (3 - 10) along with (3 - 5) and (3 - 7) to obtain

the E and H fields of the structure for an arbitrary distribution of sources on interface 2b.

The x and z components of the magnetic vector potential in each dielectric and

free space can be expressed in the form of Sommerfeld integrals [121

-17-
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E3b, '3b

'2b, 1 2b

ldx/ £lb'1b
b, b

by

Figure 3 - 2 HIED at interface 2b (dielectric 2b is transparent for clarity).

b (2A , 2(P) Ho H JXp) ab2  sifllU bz) dX( 15)

A12(P) = COS f H ( 2jXp) abz cosh(u bZ) dX (-6

A , 2(P) = COSH (Xp) [b sif(U2bZ) + C 2 sinh(Ubz)] dX
fc z2(3- 17)
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A 2 (0 = fj H0 (Xp) dx2 exp(-u3bz) dX1

A 2(p) = cos H1 2"Xp) d'2 exp(-u3bz) dXofc z2(3- 20)

b b b b
where a z2, bx2, bz2, etc. are unknown coefficients to be solved for, p is the radial

distance Ip1 between the source HED and the observer point and

Ulb = 4X2-kjbu U2b =  -k2b, U3b: k3 b

with klb, k2b, and k3 b being the wave numbers in dielectrics lb, 2b, and 3b, respectively

(k3b is assumed to be free space, ko, but is referred to here as k3 b for consistency of

notation). The wave numbers are defined as

kib = 0,i1 b g 1b, k2b = O) T-2bgii2b, k3b = Wflb ..3b

where Elb,2b,3b and glb,2b,3b are the permittivitys and permeabilitys of the

corresponding medium. Ax12 is defined as the x-directed magnetic vector potential in

region b, dielectric lb (0 < z _< bib) for a HED at interface 2b. The other values of

x z nm are defined similarly. A definition of the integration path C along with some

background behind the development of (3 - 15) - (3 - 20) can be found in Appendix A.

The boundary conditions to solve for the coefficients of (3 - 15) - (3 - 20) are

developed in Appendix B. The pertinent results are summarized as follows:

@ z = blb

Ax12 = A 2  (3-21)

j9 A, 2 b9~ 5(p)

9lb aZ 92b aZ 21cp (3-22)

b 92b (3-23)
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b bS A 1 = _ICos D 1 l A_1 2
Clbg.lb aZ E2bZ2b az E2bb Ebb P (3- 24)

@ z =b2b
b _b

Ax22 = A,3 2  (3 - 25)

1 Ax2_ 1 03Ax3.2_
k2b aZ 9t3b aZ (3-26)

Ab2 b

A 2 - 62_

92b 93b (3 - 27)

1 DA -A6 o DA 2
re-2bJ2b aZ 8-3bg3b aZ (e3bg3b E2ba2b) b (3-28)

and the Sommerfeld radiation condition

r -- Coo (3-29)

where A also satisfies the homogeneous Helmholtz equation

(V2 + k2) A =0 (3-30)

The Sommerfeld condition determines the branch interpretation [9] of U3b = -kb as

U3b 2- k3b 2 k3b

U3bjiX 2k~b IXIk3b

The term 8(p)/(2np) in (3 - 22) represents the unit current source (Idx = I A m) at

interface lb, where S(p) is the Dirac delta function and can be expressed as [12]

2 = (3-31)
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Using the boundary conditions defined above and (3 - 15) - (3 - 20), eight equations are

formed and solved for the eight unknown coefficients to yield

Ab 2(P) = -H 2 XP) Nba2() sinh(UlbZ) dX

Aj DI( ) (3 -32)

b 1 ()= -s 2) COS 4 Nb22(A

c , ( ~ g )cosh~uibz)d
-47 c P e &VD()D ) (3-33)

Aba(p) = 4_-f H(XP)[Nbx2(X) sinh(u2bz) + NCX2(-) sin1u2bz)] d
47tf D(X) (3-34)

b Cos~ I L .N glsinu2bZ) + NCZ2(?) sinU2bZ)

A 22 (P ) = 4-- " ) ND & 4 L) DX (3 - 3 5 )

A 2(P) H(XP) N 2() exp-u3bz) dX

4D) (3- 36)

b =OS (I 2j() ox(-d),
4 n " c i2 D $) D 4 ) Dx -U3bz) dX<3 - 37)

where N represents the numerators of 42, ab2,bx2, bz, etc. and D represents the

denominators. The zeros of

Dr ,t. b13U3b + Uib cotldbbUlb)] U2b cosh(U2b(b2b I bb))

+ [gb211h + 423UbU3b cotNIbUlb)] sinlu24b2b - bib)) (3- 38)
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DX)_ [413U3b + Ulb tanllbIbUlb)] U2b CoSh(U2 gb 2 b - bib))

S+ [Ebl2Uib + £b23UIbU3b tanh(blbUlb) sinhu2b(b2b - bib)) (3- 39)

define the surface wave poles in the dielectrics where

Ebl2 = Elb, 4~23 = 2&' b1 l3

E2b E3b E3b

and

9b12 - ILb ' b23= j2b k13 =4b

92b 93b 9 3b

The roots of DX) and D9X) represent the frequencies at which TE and TM surface

waves propagate [9]. The terms DeX)and Db), ) are related to the reflection factors on a

microstrip structure for an incident perpendicular polarized wave (TE) and parallel

polarized wave (TM), respectively [12]. Surface waves represent power that is propagat-

ed along the surfaces of the dielectric layers, rather than radiated into space. The

numerator terms of (3 - 32) - (3 - 37) are given in Appendix C.

3.2.2 HED at interface 3b. In this case the HED is at the interface of dielectric

2b and dielectric 3b (free space) as shown in Figure 3 - 3.

The x and z components of the magnetic vector potential in each dielectric and

free space can be expressed as

Ab 3(p) = (Ho2(Xp) abx3 sinhulbz) dX
(3 -40)

A 13(p) = cos CH( 2p) a cosh(uxbz) dX
ic (3-41)

b fH~(p bi1U~z cb iIuzA 3(p) = H H2P) [bb3 sinhU2bZ)+ X3 sinh(u2bz)] CX (3-42)

Ab3(p= COS ofc H,2 J(p) [bb sininU2bZ) +C Si*U2bZ)] dX (3-43)
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Ab bAzI 3_ AM
.Llb [.I2b (3 -48)

bb
1 A zl3 1 A 3 =_ _1 -Cos .Ax13

lb~lb Z £2b4L2b -Z OS"2b2b ElbklbI (3-49)

z b 2b

'23 = A 33 (3- 50)

1 aAb23 - 1 aAb33  5(P)
P12b Z kL3b Dz 2np (3-51)

9.2b 9l3b (3-52)

b b
1 - 1 A = cos( 1 12 A 3 3

E2bg2b aZ E3bW3b aZ E3b.b E2bL2J P (3 - 53)

and the Sommerfeld radiation condition (3- 29). As before, the term 5(p)/(2irp) in

(3- 51) represents the unit current source, this time at interface 2b. Solving for the

unknown coefficients of these equations yields

Abl 3(P) = I bax()

JI.l 2P) Nb() sinh(ulbz) dX (3-54)

So (2 kp)  cosh(uIbZ) CX

A23(P) = _LIH(2 UP)"Nbx3(X) sinh(U2bZ) + Nbx3(x) sinhu2bz) d
4ft Df(X) (3-56)

- 24 -



If!. Theory

b (P Co HM P Nb3(X) sinllubz) + Nc'z3(X) sinI~u2bz)] CI
I~~p OXb (3- 57)

c 0DP)e(X)-b) dX (-8

b -__ H 2 A N b&3())
ABO3() Cost 0 " p)' ex(-U3bZ) X

47E c DjX) b~x)(3-59)

The remaining parameters of (3 - 54) - (3 - 59) are given in Appendix C.

3.2.3 HMD at interface lb. The electromagnetic fields in region b due to the

equivalent magnetic current on the ground plane (see Figure 3 - 4) are found with (3 - 11)

and (3 - 12) along with (3 - 6) and (3 - 8). The analysis is begun by finding the fields

z

'-3b, 1'3b

E2b, 92b

4 lbIl b

b2b

VdxY
bJp

Figure 3 - 4 HMD at interface l b (dielectrics lb & 2b are transparent for clarity).
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created by a HMD along the x-axis at the ground plane with a unit moment Vdx = 1 V m.

As above, the x and z components of the electric vector potential in each dielectric

and free space of region b can be expressed

Fb1 (p) = Hr Xp) [abi Sinh(ulbz) + e b cosh(ulbz)] dX6X1 f 0 X(3- 60)

Fz I(P) = cos Of H ,2 Xp) abl sinh(ulbz)dX
Jc (3- 61)

fc (2 b

FX2 1(p) =  Ho 
2 Xp) [b I sinh(u2bz) + Cb cosh(u2bz)l dX

Jc (3-62)

F 2 1(p) = cos H 2 Xp) [bz sinh(u2bz) + c cosh(u2bZ)] dX (3- 63)

Fx3 (p) j H(Xp) dx 1 exp(-U3bZ) (4

b (Fb1 (p) = cos Of H ,2J)p) dzl exp(-u3bz) dXj H~~(Xp d~1 (3 -65)

The boundary conditions to solve these equations for the unknown coefficients

are:

@ z=0

Sib az 2np (3- 66)

@ z=blb

Fx1 I = Fx21  (3-67)
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1 Fx21

elb aZ C2b az (3-68)

Elb E2b (3- 69)

'J 711_ 1 -F ZI Cos EaL-~
ElbPLlb DZ £2bi2b aZ 1S2b.2b E1bkb I DP (3-70)

@ z = 2b

Fx21 = Fx3 1  (3- 71)

E2b IDZ E3b az (3-72)

E2b e3b (3-73)

1 Fz21 1 a o Fz31 =Co I 1 OF I3

E2b4.L2b aZ £3bg3b -z C (e 2- a2b p (3-74)

and the Sommerfeld radiation condition (3 - 29) with A replaced with F. Similarly as

before, the term -5(p)/(21cp) in (3 - 66) represents the unit magnetic current source on the

ground plane (interface ib). The solutions of (3 - 60) - (3 - 65) are then

() JH V )-~-sin~ulz) + N'xl('X) cosh ulbz)J" C ~ ) jd (3- 75)

b c I(p) 0 ( 2p) -zI (x sinI~ulbz)d%
4 I D'(X 

(3-76)
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Fb2 1(p) = 4_ 1X.. H~oXp)[Nbx ()sinhlU2bZ) + NcX I(%) cosh(u2bz)]dX
4E ,c O(3 - 77)

FSb "H 2)(P)Nbz Sinh(U2bZ) + -NC sinhu2bZ)]d),z D (X)D(X) 
(3-78)

Fx31(p) = 4-Lj HO(,Ix)Nbx(X) ex(-u3bz) dk41Df .a) (3-79)

b (21P Nzl(X)
Fb(p)= 4E O Hi2Xp) HI _ (?! exp(-u3bz) d(4n ,(XMX) (3-80)

The remaining numerator terms are in Appendix C.

3.2.4 HED and HMD in region a. The solution for the magnetic vector potential

for a HED at interface 2a is much simpler since there is only one dielectric layer in

region a. The vector potential for the single layer case can be found by either reducing
(3 - 32) - (3 - 37) or (3 - 54) - (3 - 59) by letting bb = bi=blUb--Ub=Ua b-

£3b = £2a, 92b = 113b = 92a, ulb = Ula, elb = £1a' 91b = 91a; or by solving for the

boundary conditions for a single layer. This has been accomplished by other researchers

[5; 6; 12] and only the results will be presented here:

Aa12(P) = H-J1p 0x2(". sinh(uiaz) dX
cDX) 

(3-81)

o zj[-- H Xp) N.,(X) cosh(u.z)dX
4np fA DIX) D4X) (3-82)
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Aa22(p) = 4_L H"oJ(Xp) Nx 2(X) exl(-U3bz) dXDIX) 
(3-83)

Ac(P) = H() exp(-u3bz) X
4 = DI) DX) (3-84)

where

ula=Vk -k~a,U2a= 2 a

with kla and k2a defined similarly as before with k2a = k3b, assumed to be free space,

ko . The solutions for the HMD at interface la are

(p(2+p)- ia + N(x (k) cosh(u i aZ -l

47ru Lf D18  Su aD U(X) (3-85)

Fail(P)= DjX)D4X) (3-86)

Fx2 l(p) H. UP ) exp(-U3bZ) (8)

Fx21(p) = HZo HXp) NI 1 ( U) ex p(-U3bZ)dX (3-88)

with the zeros of

DIX) ga12 u2a + ula cothbi, ua) (3- 89)

and

Da4X) = Ea12 U2a + Ula tanh~bia Ula) (3- 90)
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defining the surface wave poles in region a where

Ca 12 =  _a; a12 = t  a

E2a P-2a

The remaining parameters are in Appendix C.

3.2.5 The scalar potentials. To calculate the E and H fields of (3 - 5) and (3 - 8),

the electric and magnetic scalar potentials are also needed. These can be found with the

Lorentz gauge conditions for electric and magnetic sources:

V. A + jiV = 0 (3-91)

V. F + jco)EiJVm = 0 (3-92)

When applied to the vector potentials calculated above, (3 - 91) and (3 - 92) will actually

yield the potentials of two opposite point charges; electric charges for (3 - 91) and

magnetic charges for (3 - 92). To find the potential Green's functions of (3 - 10) and

(3 - 12), the potentials of single point charges are needed. The potential Vq of a single

electric point charge and Vmq of a single magnetic point charge are found using the

electrostatic and magnetostatic relationship linking the point charge and dipole potential:

V = DV---

ax (3-93)
for the electric point charge [12] and

Vm =" Vmq.
ax (3 -94)

for the magnetic point charge. By integrating V or Vm over x, Vq or Vmq can be found
within an arbitrary constant. Since the gradient of Vq or Vmq is taken to calculate the

electric or magnetic field, the value of the constant is immaterial.

3.2.5.1 Scalar potentials for HED at interface 2b. Applying (3 -91) to

(3 - 32) and (3 - 33) yields

j&OCIb.lbVbI12 - [-- (395)Lax ] (3- 95)
which results in
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V12(P) Cos Nbx2( (P) x Ulb Nbz2(k) ( sinh(Ulbz)9
4 jo cb4 b D((9) U (3-h96)

As stated above, this is the potential for two point charges. The potential for a single

point charge is found by applying (3 - 93) to (3 - 96) to get

1P 1 '2Vp"Nu 2()Ub Nbz2 (X) sinh(Ulbz)dX
4ltJcj0 ltlb) LD (X ) -x&)J (3-97)

The potentials in the other mediums are found similarly:

()"Nx2(___[() U2b Ncz2(x) sinhNu2bz)Vq2() H(21Xp) D ,X) X 0(X) D b4)_.d

4 1tj X2b N2b + Nbz2(X) 1 cosh(u2bZ)

C De(X) D ( ) D )- (3-98)

o ,32(P) H•(X p) +  exP(-U3bZ) 141cjW"3bg'tb X bbk D(k) D~.(-9

3.2.5.2 Scalar potentialsfor HED at interface 3b.

b 2iNlk Naz3(x)]
Vql3(P) = 4/j~b .4,2)(b -bN('

1 4 7 cj O Ib Ib ) f c ) , X 4x ) -Ds i 4U lb z) d X (3 - 10 0 )

Nbx3(). U2b N z3(X) I sinhlU2bZ)
q23(p)= H(2;p!LD ) £ D;)~Z) dX

4 j 2C2bN2b N ()- Nbb3 (X) COsh(U2bZ)(

C I+ D(X)(-3)1 (3-101)
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(b + u~ N0(?,)1
Vq3 3 (P)=..lJ Ho2"XP)[ . exp(-U3bz) d), 3 12

3.2.5.3 Scalar potentials for HMD at interface lb.

' 4 qi(P) I,.,(X)) ulb Da(X)i cosh(ulbZ)~
qI P) 4 tj OC I.Llb I CH + D X si fulU bZ) X(3 - 103)

Cb

0~LD4X) X bbX)P sh4U 2bZ)I
Vb~( I 104)-(%

V.q~l(P)l (HF-(XL~b 0 Nx()~ N bb I() 1 OhUb)d
47rj&)E~bJ.3bJ L ~4X) X D(X) () x(Ub)d

(3 -104)

VI 1 [NI ) Y1ak Ndz2(X)1
47~O~iI.L &)4)D ) X DX) D'X) _l~iZ (3- 106)

3.2.5.4 Scalar Pote ntials for HMD at interface 2a.

Va ~~~([2: (x)a N2()12P=HOU)a 1X sih(uz) 
-A-----, f4,c(p IL DtX) X DIX) D4X)J (3-106

q Va)ia.i N dda(X)

q22(P) = 1 HWI~p) +!!I& (-UZ) I

C DgX)(3- 108)
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(2 Hx ) + 1!2a Ndzl(X)
V am q2 l(P ) = 4 j° 2a A2a. c HDOU P) X D IX ) D x )j ex) _ -U3bZ) (3 -109 )

All vector and scalar potentials derived above were checked to insure they met

the appropriate boundary conditions.

Table 3 - 2 Necessary Tangential Fields

1ED at interface 2b (Patch 1): HMD at interface lb:

1) Htan at interface 1 1) Htan at interface 1

2) Etan at interface 2 2) Etan at interface 2

3) Etan at interface 3 3) Etan at interface 3

HED at interface 3b (Patch 2): HED at interface 2a:

1) Htan at interface 1 1) Htan at interface 1

2) Etan at interface 2 2) Etan at interface a

3) Etan at interface 3 HMD at interface Ia:

1) Htan at interface 1

2) Etan at interface a.

3.3 Constructing the Green's Functions

From the vector and scalar potentials calculated above, the E and H fields in any

medium from any of the above sources are found using (3 - 5) to (3 - 8). However, only

the tangential fields of Table 3 - 2 are needed for this analysis. In the following sections,

the Green's functions due to each source necessary to calculate these fields are construct-

ed.
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3.3.1 E fields due to electric sources and H fields due to magnetic sources.

Equations (3 - 5) and (3 - 8) are used to calculate the E and H fields due to their

respective sources. The final form of the equations is independent of the type of source

(electric or magnetic) because of duality and independent of the source and observer

interfaces. The Green's functions for the case of an electric source on interface 2b and

observer on interface 3b are found to demonstrate this form.

The tangential E field at interface 3b is found by putting (3 - 36) and (3 - 99) into

(3 -5) to get

" 32= [-j(A,32" + Ay32Y) - V q321 (z-m,) (3-110)

where Ay32 is the magnetic vector potential for a y -directed current source and is equal

to (3 - 36). Since only a unit point source at p' = 0 is assumed (for now), it is seen that

the integrals of (3 - 9) and (3 - 10) over the point source leave

bxx b
GA 2(p) = Ax32(P) (3- 111)

GA32(p) = Ay32(P) (3- 112)

Gq32(P) = Vbq32(P) (3- 113)

bxx
where GA2(p) is defined as the magnetic vector potential in the x-direction (first x in

the superscript) on interface 3b for an infinitesimal x-directed current source (second x

in the superscript) on interface 2b, with observer at radial position p. The Green's

functions in (3 - 112) and (3 - 113) are defined similarly. By taking the gradient in

cylindrical coordinates and using the identity p = x cos 0 + y sin 0, (3 - 110) becomes

bran ,cbxx aCGb 32(P) ( [ o)byy/x __ sin___E3 2 P) _j - cos _ -jw.,y 2 P) sinE32 P) 0 + I AP (3- 114)

Notice that the Green's functions depend only on the radial separation p = Ipi between the

source and observer and not the relative angular positions. This expression gives the
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tangential E field anywhere on interface 3b for a point source at p = 0 on interface 2b.

For arbitrary source and observer points, let p and 0 become (see Figure 3 - 5)

R=Ip - p'l
[psin- sin,-p' sin 0'

R J (3- 115)

Then for a distribution of sources over interface 2b, (3 - 114) would become

E32(p)= " GA32(R)Jx2(p') ds' cos4 G 3 2(R) q2(p') ds Y"

+ ~cof G Y(R) Jy2(P') ds' sin jGq,32 (R) q2(P') dsj
(3- 116)

where

Gq32(R) = 
b32(R )

D)R

By properly interchanging the Green's functions and source terms in (3 - 116), all the

tangential E fields produced by HEDs and all tangential H fields produced by HMDs for

Table 3 - 2 can be found. All the Green's functions are summarized in Appendix D.

R
P

Figure 3 - 5 Geometncal relationships for x-directed HED at arbitrary p' [21.
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3.3.2 Efields due to magnetic sources and H fields due to electric sources. The

tangential E fields at the dielectric interfaces due to the magnetic sources on the ground

plane are found with (3 - 6). Again, the form of the equations are the same for either E

or H fields so only an example is done here.

The tangential E fields at interface 2b due to an infinitesimal, x-directed magnetic

current source on interface lb (ground plane) can be found by first expressing FbI in

cylindrical coordinates

'cos ( ( Nbxl( sinlNu2bz) + Nb 1(k) cosh(u2bz)d

FH21(P) = HbC nb
41c D%) (3- 117)

Fb21{O) =- . H(Xp)[N bxl(x) sinhNu2bz) + N x,( .cosh(U 2bZ)d

-0 DIb) d ) (3 -118)

F b cos (2w ) Nbz sinhu2bz) + NCZ
1 sinhNu2bz)] d,z2DII()Dr4) 

(3-119)

and then applying (3 - 6) in cylindrical coordinates to get

E " (p = - I - 'J -z" ( F p 2 aFb -21 b 0 z az " p ] z=blb) (3- 120)

By using p = x cos 0 + y sin 0 and 4=-isin 0 + 7 cos ,the x and y components of the

E field can be found:
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H H2jXp) ),Nb 1 sinh(u2bb1b)+ N, ,l sinh(U2bblb) d\

2xx 2 ))D(X) (3-121)
[ H0 )() sin 2

-  e4mbbb(
H (E21k )fbz sifll12bb1b) + NCZ1 sinhXU2bblb) 11

P 1 Oe 0D4(X) l (3121

j o(2 ) .12 Nbxl sh(u2bblb) + Ncz(X) sinh(u2bblb) dX
by '' ."0 6'4x b()Db{.E21 ((p) = 4bx(2bDS4]

4 7CE2b

+ cos 20 H (%P) Nbzl sinh(u2bblb) + NCzi sinh(u2bb1b) I
(3- 122)

where 4 1 denotes a y-directed field for an x-directed magnetic current element. Notice

again, the integrals of (3 - 121) and (3 - 122) depend only on the radial distance between

the source and observer points. For an arbitrary distribution of x-directed magnetic

current elements and using (3 - 115), (3 - 121) and (3 - 122) are represented as

E X(p) = - GE(R, ) MvN,(p') ds'
Js, (3- 123)

E~X(P) = - t G E(R, ) l(p) ds'

(3 - 124)
bx' byxu )eusth

where - Gx(Rd) equals the right-hand-side of (3 - 121) and - GE(R,) equals the

right-hand-side of (3 - 122) for arbitrary source and observer positions.

The E fields for y-directed magnetic current sources are found by letting 0

become 0 - nt/2 in (3 - 117) to (3 - 119) [12] and repeating the same procedure as above.

The x and y components of the E field at interface 2b due to an infinitesimal, y -directed

magnetic current source on interface lb are then
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H (2kp Nbbz SinI(U2bblb) + N~2 IsifllU2bbjb

,, s n _ sin 2( 
D ~ X )D U X )

"21 ---- b b"

+12fup) 2bbb) CZ1 sinh(u2bblb) dSD(X)Db4X) (3- 125)

y -1 H +,(2,I 112 Nbxl(%) cosh(U2bblb) + N z (k) sinh(u2bb1b)
_ _ _ f H (cP 0 ~b l D I4 X )

cbxy= 2  Nbz1 sinhNU2bblb) + Nbz1 sinh4u2bblb)2bl

which are the same as (3 - 121) and (3 - 122) except for a few sign changes. For an

arbitrary distribution of y -directed magnetic current elements, the E fields are represent-

ed as
Eby(p) H - E((R, ;) XN 1 (p') ds'

21 ~ ~ 2 4T"C-- "f 0,q)bX

Js~ (3 - 127)

b bx

E+cs2p) - GP.(R,j) + ,(p') ds'

J e(X)(3- 128)

Thettal t angential field can be written more compactly as

E bta(p) =- G 2 1 (R,). M(p') ds'

2 1 E 1( 3 - 1 2 9 )

where

= Gb2(R, )rr G Rxy(, ) 1
E2 -y(R,y y E )yy (3-130)
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The tangential E fields at interface 3b for the magnetic currents are found by

replacing blb with b2b (3 - 117) to (3 - 119) and repeating the above procedure to get

E 3 (p) = - GE3(R,)- (p') ds' 131)

and in region a

E2t (P) = - GE21(R,) • M1(p') ds'
(3- 132)

Starting with (3 - 7) and following the above procedure, the tangential H fields at

the ground plane are found for electric currents on the dielectric interfaces. For currents

on interface 2b

H* 1(p) = f 12 (R,;) J 2(p') ds'
is (3 - 133)

currents on interface 3b

* p 1 3 G 13(R , ') 3I S'~ (3 - 134)

and the scattered currents on interface 2a

Itan" ==

A( 12 (R, Jjp') ds' (3- 135)

This last equation can also be used to find Ht"(p) for the incident current, Jinc" The

complete equations for the Green's functions of (3 - 129) to (3 - 135) are in Appendix D.

3.4 Matrix Equations

The unknown current and charge distributions on the conductors and aperture are

found by enforcing the boundary conditions of Table 3 - 1. The boundary conditions are

expressed as integral equations involving the calculated Green's functions and unknown

distributions. Using appropriate basis and testing functions, the integral equations are

converted into matrix equations that can be solved for the unknowns.
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3.4.1 The integral equations. To meet the boundary condition Etan = 0 on patch

1, the sum of the tangential electric fields due to the sources on patch 1, patch 2 and the

equivalent sources on the aperture must equal zero. Using the Green's functions defined

earlier and (3 - 5), this is expressed as

-icj, GA22(pI ).. 2(P') ds'- Vj Gq22(p p') q2(P) ds'

-Oj GA23(P IP')" J3(P') ds'- Vtj Gb2 3(plp') q3(p') ds'

+JGE2(PP). Mi(p')ds' = 0

(3- 136)

where
bxx

GA22(PIP) 0 A2 2(pi')YY] (3- 137)

GA23(PIP') is defined similarly, and from Figure 3 - I

Mb(p') =-M 1(p')

Similarly on patch 2

-icojl GA32(P IP' J2(p') ds'- Vt f1 Gq32(pIp') q2(p') ds'

-ojm GA3 (plp). J3(p') ds'- Vf Gq33(Plp') q3(p') ds'

+fG, ,(PIP ). M,(P') ds'= 0
JA (3- 138)

On the feedline, the difference between the tangential E field due to the incident

current and the sum of the fields due to the reflected current and equivalent magnetic

current must equal zero:
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-jCO GA22(PIP)" Jinb) ds'- Vtj Gq22(PP') qHn(P') ds'

+i(oj GA22(P P')" Ji(p')ds'+ vt G 22(p Ip') qt(p') ds'

+ fA GEA1 PlP). M1(p') ds' = 0(319J, (3- 139)

where

Mi(p') = Ml(p')

Truncating the microstrip feed at 2 to 3 wavelengths from the aperture is sufficient [5] to

produce accurate results for the type of basis and test functions discussed below.

The final boundary condition that must be enforced is Htan continuous through

the aperture. The tangential magnetic field at the aperture due to all sources in region a

must equal the tangential field due to all sources in region b. Using (3 - 8) and the

defined Green's functions, the integral equation is

JGH12(PIP) Jin(p') ds' + fGHl2(pIp'). J(p') ds'

-j (f~pGFIJPII M~p' ds Vtf~pGmj 1(p Ip') qml(p') ds"

= GH2(pIp)" JI(p') ds' + f GH13(PIP)" J2(p') ds'

+j OF(plp')- M(p') ds'+ Vj GM1 i(plp') qml(p') ds'
• "., (3- 140)

3.4.2 Basis and test functions. To solve for the unknown currents and charge

distributions in (3 - 136) to (3 - 140), a method of moments approach using subsectional

basis functions [11] can be applied to convert the integral equations to matrix equations.

The source surface (antenna patch, feedline, or aperture) is divided into elementary

domains (cells Sj) and a basis function is defined over each cell [5]. The observer surface

is also divided into cells with a test function applied to each observer cell Ci. The
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number of cells the source or observer planes are divided into depends on the area: a

small surface will take fewer cells to describe than a larger surface. Hence, the size and

number of cells used to divide the source and observer planes may be different.

Mosig showed in [51 that overlapping rooftop functions can be used effectively to

expand the x and y components of the surface currents. The basis functions for the

surface charges are then 2-D pulse doublets, according to the continuity equations

(see Figure 3 - 6). A 1-D pulse test function can be used to greatly simplify the

calculation of the matrix elements without sacrificing convergence time or accuracy.

This choice also eliminates the need to compute field values near the surface edges,

where field singularities can adversely affect the performance of the moment method [13].

Basis Functions Test

Current Charge Function

-a +a A +a -a/2 +a/2

2D-Pulse2D-Rooftop Doublet

Figure 3 - 6 Basis and test functions. The two-dimensional functions are independent of the
transverse coordinate [s.

The vector rooftop function associated with each current source cell Sj is defined

as Tj. To adequately describe the current on a conductor or over the aperture requires Nx

x-directed functions and Ny y-directed functions for a total N = Nx + N Therefore,
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Y'il[. (P,' P'A) 1;~ (p'- p'j)I< aIY. (p'- p'j)f <cb/2, 1:5j5N

Tj(p,)=/ 1 Y%'(P - P")j I; (p'-p'J)j<a/2 , Y.(p' '-p'J)I <b, Nx <j : N

0; Otherwise
(3- 141)

The x and y components of the current are expanded as

N1  NJsx :j aj' Tj(p') Jsy =IL tjT~'

=1 j=N.+l (3- 142)

where aj are the unknown coefficients, p is the center of the j th current cell on the

source plane, b is the dimension of the charge cell perpendicular to the x -direction, and

a is the dimension perpendicular to the y -direction (see Figure 3 - 7a) [13]. Note in

Figure 3 - 7a, the x-current cell S 1 and y -current SNx+ 1 share the same charge cell. In

fact, any charge cell can belong to as many as 4 current cells: 2 x-current and 2 y -current

cells. Thus, the current cells automatically overlap. The continuity equations can be

used to expand the surface charge density, yielding

N
qs __ c n(p')

Ja u j(3- 143)

where ni(P')=- V'xT, which is a two dimensional pulse doublet function (see

Figure 3 - 7b) defined as

+ 1; 0<Y(p'-p'j)<a, Iy.(p'-p'j)<b/2, 1--j -Nx
a <; Y . (p' -p'j < 0, 1y. (p' -p'A]< b/2, 15 j<:5Nx

nj(p')= + 1; Y-.(p' -p'Al< a/2,O0<y- (p' -p'j) <b, N,,<j_5_N
- 1Y; .(p'- p') < a/2,- b <y.(p'- p'j) <0, Nx <j<5N

\0; Otherwise (3- 144)

These functions are used similarly to expand the equivalent magnetic currents and

charges of the aperture.

The relationship between the number of charge and current cells is not exactly

simple, since the relationship depends on the shape of the conductor or aperture. For a
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x-current cellS
P'I' P'N-x+l ]..

'_ P 1 'I Source
SContour

y-current cell
S N x + I _
P'Nx+I

charge P Nx+1l
c e ll _

Figure 3 - 7a Segmentation of source plane into elementary charge and current cells.

"X

2x

a

Figure 3 - 7b x-directed current cell at p=0 and associated surface charge [131.

rectangular patch or aperture with m x n charge cells, the number of x -directed current

cells is N x = (m - 1) n and the number of y-directed current cells is NY = m(n - 1) [13].

3.4.3 Convert integral equations to matrix equations. The basis and test

functions defined above are applied to the integral equations (3 - 136) to (3 - 140) to

define a series of linear equations that can be solved for the unknown coefficients using

standard matrix techniques. The test function is applied to the current cel s of the
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observer plane (unprimed coordinates) and the basis functions are applied to the current

cells of the source plane (primed coordinates). The integral equation (3- 136) then

becomes
N2 N2  f~

0 X I d G4&2(plp'). T2j(p') ds'
i=1 j=l c2i f2j

S b + b  -I'

+ [Gq22(P2oi[b)- Gq22(P2iP')] I2j(P')ds o1b2joo a 2b 2 f2,

N2 N3 Ft
X (j~ H -J fl GA3(plp'). T3j(P') ds'

i=1 j=1 L c Sj3

+ 1 [ 23(p ilp)- G 23(P2iP')] rH3j(p')ds'1 a 3

jo)3b3  J (

i= j=l c . i. (3 -145)

The index variable j always refers to elements on the source plane and the index variable

i always refers to elements on the observer plane. The number N2 is the total number of

current elements (x and y-directed) on the conductor at interface 2b (patch 1) and N1 and

N3 are defined similarly. The other variables are defined( b2 for 1 <j-<N 2x

t2j a2  for N 2x + 1 !5 j < N 2

C2j = P2-j to P2j

with tlj, t3j and Clj, C3j defined similarly.

The matrix form of (3 - 145) is
[422] [(jb2] + [423] [0Xb3 "21] []0 (3-146)

where the [Z] components are impedance matrices in units of ohms/length and the [C]

component is a coupling matrix in units of 1/length. The column vectors LO j and [aj

are the amplitudes in units of amps, of the electric current elements on the conductors at

interface 2b (patch 1) and 3b (patch 2), respectively. The column vector [all represents
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the amplitudes of the equivalent magnetic current elements of the aperture in units of

volts. The x and y components of the matrices and currents are related by

K" K'~ orKX KI ' = Etan or Htan

Kyx yy ~Kij xij

where K is any impedance, admittance, or coupling matrix. The individual components

of the matrix are determined by

x 1 <i<Nx xy f 1 <i<Nx
Kij for 1j5 Nx ij forN <j N

N<iN Kyy for JNx<i:N
Ii f 5~ j<5Nx ij Nx <j!5N

aj for 1 !5 j:5rNc4~ for1 j<Nx

aY forN,<j<N

In this way, the x and y components of the field for all x- and y -directed components 'f

the surface current are described with one matrix operation.

The matrix forms for (3 - 138) to (3 - 140) are then
[4j32] [ab2] + [4133] [a&'3] "[Ci 1] [all = 0 (3-147)

4 1 1 z ' a 2 317

[Cij1][ fl]+[Zi 22][a]=[Z 2][ainc(
j (3- 148)

[c12][a2] +[C13][a]+[ l] 1 1 [] [C 2][inc](3149)-I j = [C.2 aj c] (3-149)

where the [Y] components are admittance matrices in terms of mhos/length. The column

vector [aJl are the amplitudes of the reflected electric current elements on the feedline

and [X.,j n are the amplitudes of the known, incident electric current elements. The

equations for the various impedance, admittance, and coupling matrix elements are

summarized in Appendix E.

3.4.4 Solution matrix. The matrices defined in (3 - 146) to (3 - 149) can now be

used as sub-matrices in the solution matrix
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ij [Z23] _ [C2l][[C I2] [z3] [c 1] [o] [OC] [o] 1 -] c ,i

[132] ] 4] ] [0d]_ [0] [ ]

[] [0] [ce'] [&2] [a] L [z2] J150)

where [y1] [y 1l] + [Y'il']. All the diagonal sub-matrices represent tangential fields

created by sources in the same plane. Each diagonal term of these sub-matrices

determines the tangential field at that segment created by the source in that segment.

Therefore, the diagonal terms of the entire matrix represent the tangential fields at every

segment due to the sources in that segment. Since these fields are the strongest

calculated, the matrix is diagonally dominant. The off-diagonal sub-matrices represent

the tangential fields at one plane created by sources on a different plane.

The observed fields for the various source planes are determined by the row and

column positions of the matrix. The row positions determine the the observed field and

the column positions determine the sources of the field. For instance, the first row of

sub-matrices determines the tangential electric field at interface 2b over patch 1.

Columns 1, 2, and 3 designate the sources of the field as those on interface 2b, interface

3b, and interface 1 (ground plane), respectively. Note that sources on the feedline make

no contribution to the field at interface 2b, so the fourth column has a zero sub-matrix.

The number of rows and columns of each sub-matrix are determined by the

number of segments (current cells) the observer plane and source plane are divided into.

The number of columns (i index) will equal the total number of current cells on the

source plane. The number of rows (i index) equals the total number of current cells on

the observer plane. Therefore, the sub-matrices in each row of the solution matrix have

the same number of rows, but a different number of columns. The diagonal sub-

matricies are square, since the number of observer and source cells are the same. This
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results in a square solution matrix with the number of rows or columns equal to the total

number of rows or columns of the diagonal sub-matrices.
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To apply the moments method procedure outlined in chapter III and determine the

surface current and charge distributions of the antenna, numerical evaluations of the

Green's functions must be developed. In this chapter, the functions to be integrated are

first investigated and characterized so proper numerical techniques can be applied. The

actual numerical computations are done with custom Fortran code combined with several

commercial subroutines from the IMSL libraries [14]. These commercial routines were

used because of their proven accuracy and to save time in code development.

4.1 Characteristics of the Integrands.

Because of the complexities of the integrands, the numerical integrations in the

Green's functions are far from simple. The integrands are defined over an infinite path in

the complex plane. The integrands are oscillatory, they decay at different rates, and they

involve branch cuts and possible singularities on the real axis. By examining the various

characteristics of the integrands, simplifications are made to aid the numerical integration

process. Also, the potential difficult points for numerical integration are located and

dealt with.

4.1.1 Deformation of the integration interval into the real axis. The integrals of

the Green's functions in Appendix D can be written

Sn(f) f H(Xp) X X* d,%
(4-1)

Since f is always an even function, the integration path C can be deformed into the real

axis and (4 - 1) becomes
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S,(f)= 2f Jn(XP) X n+1 i& 2) dX
Jo (4- 2)

The function Sn(f )/2 is then the Hankel transform of Xnf [12]. If the function f has a

singularity, the integration path cannot be completely deformed into the real axis. The

path must go around the pole on the half-plane Im(.) > 0. Equation (4 - 2) is then

changed to

Sn(f) = 2 P Jn(XP) X.n+1 t(.2) 4X - 27 UX Ri Jn(xp) .p+1
Jo i (4-3)

where PV denotes the principle Cauchy value of the integral [12] and X P1 is the location

of the ith pole. The residue is given by

Ri= Lim (X-),pi) )L2 )

t--A'i (4-4)

4.1.2 Location of the poles. The location of the poles in the integrands are deter-

mined by the zeros of the denominator functions D 1 and D in region b, and D a and Da

in region a. The zeros of these functions are located on the real axis for real (lossless) di-

electric permittivities and permeabilities. Standard numerical techniques are then used to

locate the zeros.

The location of the zeros are further restricted through closer examination of the

denominator functions. Looking at Dm along the real axis, the following expressions are

obtained:

for 0 < X < k3b < k2 b < klb;

04 X)b . [Ebl 3 j U3b" Ulbl tar~bl b I UlIbl )J U2b I C04 I U2b I tb)

+ [-eb2 1U2b12 E-b23 I UIb j U3b Itan(bib I UIb Sir(l I U2b tb) (4-5)

for 0 < k3b < X < k2b < k lb;
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D [X) b l 3 u3b -IUlbl tan(blb Iu1bl )] JU2b Icos( u2b Itb)

+ [-eb12 I U2b12 -eb23 I UlbI U3b ta(bb I Ubl )]jsin(I u2b Itb) (4-6)

for 0 < k3 b < k2 b < ), < klb;

Db4X)=[Eb13 U3b -IUlbI tar(bxb I Ulb )] U2b cosh(u2b tb)
+[Eb12 Ub - Eb23 IUlbI U3b ta4bIb IlUlb )] Sinh(u2b tb) (4-7)

and for 0 < k3 b < k2 b < klb < X;

DbI) - [eb13u3b + Ulb tanl(blbulb)] U2b cosh(U2b tb)

= + [Ebl2Ub + Ebg3UlbU3b tanh(blbUlb)] sinh(u2b tb) (4-8)

If k2b and klb are reversed (klb < k2b), only (4 - 7) needs to be changed

ODnE) [Ebl3U3b + Ulb tanh(blbUlb)] j u2bI COS( lU2bI tb)

+ [Eb12U~b + Eb23UlbU3b tanh(blbulb)] j sir(I U2bl tb) (4-9)

where tb = b2b - bib. No zeros can exist in (4 - 5) since both the real and imaginary

parts of the equation would have to go to zero for the same real value of X. There are no

zeros in (4 - 8) either, since the function is always positive over the specified interval for

.. Zeros can exist in (4 - 6), (4 - 7), or (4 - 9) because these equations are all real or

imaginary over the specified interval and contain oscillatory functions. Therefore, zeros

can only exist in the interval k3b < X < kmax where kmax is the maximum of k2b or k1b

(see Figure 4 - 1). Notice that the real part of DM goes to zero at X = k3b, and while the

imaginary part is continuous, the first derivative is not. Special care must be taken when

integrating near this point. It appears in Figure 4 - 1 that . = k2b is a possible zero of D.

However, u2b is also present in the numerator of all the Green's functions in such a way

that the integrand is always totally smooth at X = k2b.

It has been shown by other researchers [91 that there is always at least one zero for

Db. In other words, there is no cut-off frequency for the TM1 surface wave mode. For a

given frequency and material parameters, &,, = 0 can be solved numerically for the pole

value pb. The FindRoot function in the commercial software package Mathematica
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10.

7.5-

5. Im Re

.X kib

-5. L

(a)
15.

12.5-

10.

7.5- mR

b)

Figure 4 -1 Normalized values of D~rjk~b on the real axis for (a) f 4 GHz, bib =1.6 mm,

bb=48mm, El b - 5E0 Ie2b = 2.5c0 , e3b = 0 , Al b -92b =93b =go; (b) same as (a)

except Elib 2.5E0, I2b =560*

[15] and the Fortran subroutine dzbren from the IMSL libraries, provided very accurate

bresults for the poles of Din. For example, using Mathemnatica the normalized root for

Figure 4 - Ia is

XpI/k3 b = 1.040360728

Putting this back into Dmn yields

DnA3b j 6.995646) xl10

-52-



IV. Application and Results

The normalized root for Figure 4 - lb is

?pb/k3b = 1.057332766

which yields

D k3b =j 5.391632 x 1013

when put back into D,. The accurate location of the pole is critical for the successful nu-

merical integration of the functions.

bThere may or may not be a zero for De depending on the observation frequency.

b bAn expansion of De similar to (4 - 5) - (4 - 9) shows that like Dm, any possible zeros must

bexist on k3b < X < kmax. Figure 4 - 2 shows a normalized plot of De for the same param-

eters as Figure 4 - 1. At this observation frequency, there are no zeros for De, except at X

= k2b; but this does not produce a singularity in the integrand for the same reasons stated

above for Dm. It was shown in [91 that when a given surface wave turns on ?ipb = k3 b"

bMaking this substitution into De yields

(o-F-3bg±3b - o)~cElb~ib)" (o-P3bp.3b - WcOf2bg2b)

* cot~bb( WcE3bg.t3b - (Icelbp.lb) 2 ) coshCtb(0 o33b - 0cF2bg.12b))

+ 1tb12 (O03ce33b - OW2e2b412b) sinh(tb(Oce3bi3b - Ocr2b.t2b) l ) = 0 (4- 10)

where coc is the cut-off frequency of the TE surface wave modes for the given material

parameters. Equation (4 - 10) is a transcendental equation that can be solved with nu-

bmerical techniques similar to those used to solve the roots of Dm. For example, the first

cut-off frequency for the case of Figure 4 - 2a is fc = 12.1138 GHz and for Figure 4 - 2b

is fc = 7.93764 GHz.

The surface wave modes are similar in behavior to those of a single dielectric

layer [9]. The dominant TM1 mode has no cut-off frequency and the following modes al-

ternate TE 1, TM2 , TE 2, etc., with each mode turning on at a higher frequency. If the de-

sign frequency of the antenna is kept below the cut-off frequency of the first TE surface

wave mode, only the one singularity of Db has to be dealt with for the Green's functions
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Figure 4 - 2 Normalized values of De/k3b on the real axis for (a) f =4 GHz, bi b =1.6 mm,

b b 48mm, El b = 5 co. E2b 2.5%, E 3b Col 91 b = 2b = 3b -o; (b) same as (a)

except Clb 2 .5co, C2b5 -

in region b. This case is assumed for the rest of the analysis.

'TN; analysis of the poles for D0, and It is covered in detail in [ 12], yielding

similar results as above. One difference is that for the single layer case, the cut-off fre-

quency for the first TE surface wave mode can be found analytically by

- 54 -



IV. Application and Results

For the same first dielectric layer used in region b in Figure 4 - la (bl a = 1.6 mm, ca12 =

5) the cut-off frequency is 23.3955 GHz. It is seen that a proper choice of material

parameters and operating frequency avoids operation above the first TE surface wave

mode in either region and greatly simplifies the calculations.

4.1.2.1 Real and imaginary parts of the integrands. Combining the anal-

ysis of the denominator functions as shown in (4 - 5) through (4 - 9) with a similar analy-

sis of the numerators of the integrands, reveals the integrands are always real for X > k3b

in region b and X > k2a in region a. The integrands are always complex (both real and

imaginary parts present) for X < k3b and X < k2a. Numerical integration routines can

thus be focused efficiently on either the real or imaginary components present in the dif-

ferent integration intervals.

4.1.3 Rate of decay of the integrands. Since all the integrands for the Green's

functions in Appendix D oscillate and decay as X -- oo (for R > 0), it can be shown that

the integrals will converge. As X -* -, the integrands oscillate about the X axis due to

the Bessel functions and decay at a rate that is determined later. If a function is integrat-

ed over each half-period separately as shown in Figure 4 - 3, and these values summed as

a series, the integral is represented as

S = -1)f+lan
n= l(4- 12)

where an are the absolute values of the integrals over each half-period. Since an -- 0 as

n - -, the Leibnitz criterion (an alternating series converges only if the terms are

monotonic decreasing) is met and the series converges [16].

The rate at which the series converges is dependent on the rate of decay of the in-

tegrand. The integrands for the different Green's functions decay in two different ways.

Integrands for Green's functions where the source and observer are in the same plane

decay as X-112 as X- ,. Take for example
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a1  a2  a3  a4  a5 ..

Figure 4 - 3 integration over discrete half-periods of oscillating, decaying function.

bxx ()= 9b Jo(XR) X [U2b cosh(U2b (b2b - bIb)) + 91 b23 U3b sinh(U2b (b2b - bb))] d
A2( 2n f {tb3u3b + Ulb Cott~blbUib) U2b cosh(u2b(b2b - bib))

+ +[9b12Ub + I.b23UibU3b coth(bibUlb)] sinlU2b(b2b - blb))I

(4- 13)

which represents the magnetic vector potential on interface 2b at a distance R from a

point source on interface 2b. As X - - the integrand becomes

____ -A ex4(xtb) + b23 X eXl4tb)]
ic°XR 4 X[P- , + X ] X exP(b.tb) + [9.b122X2 + 9-b23X2 ] exA2Xtb)) (4-14)

where the Bessel function has been replaced by its asymptotic approximation [171. This

further reduces to

V1R cos(XR -) 1 + 91 b23

-4 9b13 + 1 + 9lb12 + 9b23 (4-15)

and it is apparent the integrand decays algebraically as V 1/2 for large X. This is true for

all Green's functions where the source and observer are on the same plane.

-56-



IV. Application and Results

The integrands for the Green's functions where the source and observer are on

different planes decay exponentially. Take for exampler"
Gbxx(R) = I.lb Jo(XR) . U2b dA23 2it o[b3U3b + Ulb cotI~blbulb)] U2b cosh(U2b(b2b - blb))

A + [9--bl2U b + J-b23UlbU3b cOtI(blbUlb)] sinh(u2b(b2b - blb))

(4- 16)

which is the Green's function for the magnetic vector potential on interface 2b for a point

source on interface 3b with a radial separation R. Again, as X- -c the integrand

becomes

'--cos(XR- X2 X2
{LX 'I[bi X + X I X exp(Xtb) + [A.bl2x + A1b23XI ex4),tb)) (4 -17)

which further reduces to

cos( §)R - 1 exI -Xtb)

WitXR 1  4 9bl3 +1I+ 9.b12 + A.b23 (4- 18)

and the dominant factor as X c* is exp[-.tbI. Similar results are found for all other

Green's functions where the source and observer are on different planes.

4.1.4 Behavior as R --+ 0. To determine the currents using the moments method

outlined in chapter III, it is necessary to perform a surface integration over the source

(basis) and observer (test) areas. When the source and observer points are on separate

planes, the Green's functions can be solved for a discrete series of R values between R

= 0 and the maximum radial separation expected in the antenna design. The surface inte-

grations are then accomplished by interpolating the values of the various Green's func-

tions for different R's between the calculated values [5]. But when R = 0, this procedure

fails when the source and observer are on the same plane.

For example, when R = 0, the Bessel function in (4 - 13) becomes 1 and (4 - 15)

changes to
I + -b2

Lbi3 + I + 9b12 + 9b23 (4- 19)
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as X - oo. There is no decay of the integrand and the integral blows-up, as expected,

when the source and observer are at the same point. This indicates that the magnetic vec-

tor potential must go to infinity when the source and observer are at the same point, but

the source current is still finite.

As R -+ 0, a different approach is taken to apply the moments method to Green's

functions with co-planer source and observer points. An asymptotic approximation to

(4 - 13) is made by first splitting the interval of integration at some Xc and doing the

change of variables x = XR to obtain

Gbxx(R ) - .- lb f X U2b cosh(U2b - bb)) + 4b23 U3b sinh(U2b (b2b - blb)) d)

+ !l bf Jo~x) 1 + 4l~23 dx
"ir-'I R 41b3 + I + 4tb2 + 42l~iLb23

(4 - 20)
where X'c is chosen large enough to satisfy

X, U2b cosh(u2b (b2b - bb)) + -b23 U3b sinh u2b (b2b - bb))

1+ 4.tb23

9b13 + I+ b12 + 4b23 (4-21)

to some arbitrary precision (remember u2b and u3b are also functions of kc). From

tables [181 it is known that

f" Jo(x)dx= 1 22)

which can also be written as

fJo(x) dx = 1- f J(x) dx
(4- 23)

Using (4 - 23) in place of the second term in (4 - 20) then yields
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bxx 2ib 0(XR) U2b cosh(U2b (b2b - bib)) + Ib23 U3b sinlU2b (b2b - bib)) dXGA22(R) JoOLRD X d.)

1)D D(X)IC
S+ .b23 J0(x) dx +1 + b23

.b13 + 1 + .b12 + b23Jf R R .tb13 + 1 + b12 + I.tb23

(4- 24)

The first and second integrals in (4 - 24) are now over finite intervals and the solutions

finite for any value of R. If the Bessel function in the second integration is expanded into

its series expression and integrated term by term, it is seen the value of the integral goes

to Xc as R --+ 0. The surface integration of the last term in (4 - 24) is accomplished ana-

lytically for the moments method analysis. Note the last term in (4 - 24) corresponds to

the homogeneous Green's function [13] for an unbounded medium of permeability

b 2 (1 + .b23)

.,13 + 1 + 9b12 + PLb23

This asymptotic approach is used for small R for all Green's functions where the

source and observer points are on the same plane. All asymptotic approximations are

given along with the regular functions in Appendix D. The asymptotic method is not

needed for Green's functions with source and observer points on separate planes, since

the exponential decay of these integrands is independent of R, therefore, the integrals

always converge. The characteristics of the integrands for all the Green's functions are

summarized in Table 4 - 1.

4.2 Numerical Evaluation of the Green's Functions.

With the characteristics of the integrands now defined, the numerical integration

of the Green's functions are broken up into two general cases (see Figure 4 - 4). By

breaking up the integration intervals, the unique difficulties are isolated and handled

separately. The imaginary part of the integral in both cases is readily calculated using the
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Table 4 - 1 Green's Functions Characteristics

Behavior as Integrand's rate Limit of integrand as

Function R -4 0 of decay as X X --oofor R=O

G x2 Infinite 1/ 2  + I.a2
1

a

Gq22  Infinite X-1/2 1 + Ea12
1 + kb23

A22 Infinite 1+ .b12 + .b23 + b13

b 1 1 + Eb23
Gq22  Infinite 21 + bl2 + Eb23 + Ebl3

GA32 Finite exp[-X tb] NA

b
Gq32 Finite exp[-X tb] NA

1 + Ib2
Gbxx I i-1/2

A33Infinite 1 + 11b12 + Lb23 + PLb13
b x-1/21 + Eb12

Gb33  Infinite 1 + Eb12 + £b23 + E-b13

bxxA23 Finite exp[-X tb] NA

bGq23 Finite exp[-k tb] NA
Gjaxx 1-/2

Fi1 Infinite 1

b, 1-/2Gm1 Infinite 1

Gb 1  Infinite 1
Gbl1Infinite X- 1/2 1

'E21 Finite exp[-X bia ]  NA
b

GE21 Finite exp[-X b1b] NA
b

GE31 Finite exp[-X b1b] NA

GbH2 Finite exp[-X b I a]  NA

b

GH12 Finite exp[-X bib] NA
1b Finite epAbNA
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CASE 1

(a)a

P-A

Imaginary

ItI

(b)
Figure 4 - 4 General integration characteristics for the Green's functions.

quadrature routine DQDAGS from the IMSL libraries. The real parts of the integrands

are piece-wise continuous due to the integrable singularity at X = ko. The DQDAGP rou-
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tine from the IMSL libraries is used successfully to integrate over region I in both cases

using X = ko as the location of the singularity [14]. Region III in case 2 presents no

difficulties and DQDAGS is used there. Region II in case 1 and region IV in case 2 rep-

resent the part of the integration over the semi-infinite interval, and the Method of Aver-

ages [12] described below is used in this region. The integration intervals for these re-

gions in the asymptotic cases, though finite, are large and present their own problems.

The final difficulty lies in region II for case 2. Some integrands contain a simple pole

and the integral exists only in the Cauchy principle value sense. Once the location of the

pole is found using methods previously described, a simple routine is used to find the

principle value of the integral between ±A as shown in the inset of Figure 4 - 4b.

4.2.1 Taking the Cauchy principle value. In integrands with a simple pole, the

subroutine cauchy (see Appendix F) is used to find the principle value of the integral

over a symmetrical interval about the the pole. Although more elegant methods exist [12]

to find the principle value, the method used here simply integrates inward to the pole

starting at ±A over successively smaller intervals (see Figure 4 - 5) until the solution con-

verges to some defined accuracy. Since the pole is usually close to k3b (or k2a), the best

approach in determining A is to make A some fraction of the interval between k3b and

the pole location. The expression

Ab = Xpb - k3b
10 (4-25)

was found to work well in region b.

The cauchy subroutine was tested (see test program 1, Appendix F) on the

function [12]

I = P sin ( -) dX = 1.450590
X- 1 (4-26)

using A = 0.1 and returned I = 1.45058958. As long as the exact position of the pole is

known, this procedure converges to the correct solution with as much precision as the
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A3 2  A1I .+
I I I I , I "

A1  "2 A3

Figure 4 - 5 Successive integration intervals for Cauchy principle value.

computer is capable of.

If the position of the pole is approximated, the accuracy of the solution

deteriorates. The solution converges until the integration interval on one side of the ap-

proximated pole gets too close to the actual pole position. At this point the solution starts

to diverge. Table 4 - 2 gives the solutions the test program converged to for several ap-

proximated pole positions. Even though the first two pole positions are accurate to six

significant figures, the solutions are only accurate to three. It took pole positions accu-

rate to twelve figures to obtain solutions accurate to six significant figures.

Table 4 -2 Solutions With Approximate Pole Positions

Approximated pole Solution

1.000001 1.44963661
0.999999 1.45124023

1.000000000001 1.45058621
0.999999999999 1.45059361
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The solution is guaranteed to diverge when attempting to find a cauchy principle

value by integrating over successive intervals in towards an approximate pole. To insure

convergence, the subroutine cauchy uses what may be called a reset method. The size of

each integration interval on each side of the pole in Figure 4 - 5 is half the previous one

(i.e. An = A/n 2 ). At the integration interval the solution starts to diverge, the subroutine

resets the solution to that of the last convergent interval and continues to integrate in to-

wards the pole (see Figure 4 - 6). Except, the interval is again halved and the integrations

get no closer to the approximated pole than the point where the solution starts to diverge.

The subroutine continues to halve the integration intervals until the desired relative

accuracy is reached. Unfortunately, as shown in Table 4 - 2 the answer this method con-

verges to is not very accurate unless the approximate pole position is much more accu-

rate.

Note: Same process
takes place on other
side of the pole.

Instead of taking

All A12  A13 A14 *- next interval here,
interval is taken

~~here
Say the solution diverges with 

h

contribution of integration over this
interval. Contribution of this inter-
val is thrown out, interval halved
again, but started at same point

Figure 4 - 6 Reset method for taking Cauchy principle value.

4.2.1.1 Calculating the residue. If an integral must be evaluated in the

Cauchy principle value sense, it also has a residue that must be calculated. Since the pole
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location is approximated and cannot be factored out of the denominator of the integrands,

function (4 - 4) cannot be used directly to find the residue. If the part of the denominator

a rbcontaining the pole (D, or Dm for only one surface wave mode) is expanded into a Tay-

lor series about the pole, the residue is found by

residue= lim (X- P) ng(X) ng(Xp)

- 4 d() d'(p) (4-27)

where ng(Xp) is the non-singular part of the integrand and d'(Xp) is the first derivative of

the singular part of the denominator evaluated at the pole.

For example, the solution to Gb32(R) for any value of R is

[U3b + PbI3 Ulb tanh~blb Ulb)]
GJ 0(XR) X U * U2b cosh(u2b (b2b - bib))

21mE3b 6bX Dx + 9~b13 Erb12 Uhb + (9.b23 - 9b13 41i2) uib
) 614k I +b12 Ulb U3b tanh(blb ulb)

0* sinh(U2b (b2b - bib))

([U3b + 9b13 Ulb tanh~blb Ulb)]

j JO(4pbR) Xpb U2b ) * U2b cosh(U2b (b2b - blb))
2E3b DI b D b( +) [4'b 3 Ebl2 Uhb + @Ab23 - 4 1 3 Eb 12) U32b

bDeP)Db) Ip/ * + Ab,2 Ulb 113b tanhlbib Ub)
* sinh*u2b (b2b - bib))

(4- 28)

where

D'b (Xpbm  = -pb ( Ub2 Uh + Cb23 Ulb U3b tanh~blb Ulb)) u u-+ -- 13

U2b u2b U3b

" bib U2b sech~blbUlb) +(Yb + 121) tan~blb Ulb bcosh(tb u2b)
U2b Ulb)

+ [tb (b13 U3b + Ulb tanh(blb Ulb)) + 2 £b12

" bib Eb23 U3b sech2 blb Ub) + (U + 11-3)Ub23 tanUlbb uib)] sinh(t b U2b)}

(4- 29)

Note ulb, u2b, and u3b are all evaluated at Xpb in (4 - 29) and the second part of (4 - 28).

Similar expressions are used in region a for integrations with singularities with

D U(pa) = Xpa [jU + bla sechkbi a U1a)+ tan(bi: U)] (
u2a u- (4-30)

-65 -



IV. Application and Results

where Ula and U2a are evaluated at Xpa"

4.2.2 Method of Averages. The Method of Averages is a technique developed by

Mosig and Gardiol [121 specifically to solve Sommerfeld integrals, but can be applied to

almost any integral of an oscillating function from a finite point to infinity. Consider the

integral

Ifjcosx f(X) dX (4-31)

where f(.) is a continuous function with asymptotic behavior

lim f)L) = C 0
X-4* (4 - 32)

where a = -1/2 for the functions in this paper and C is some constant. The cases with ex-

ponential behavior will be treated later. Integrals like (4 - 31) can be evaluated as an

oscillating series like (4 - 12). A partial series Im (m = 1, 2, . .. , M) for (4 - 31) is

defined

I'mfjcosXp4)d m=1,2,. . M(4-33)

where Xm are the successive zeros of the oscillating function greater than the lower limit

of integration a. Like an alternating series, the difference between the real value I of the

integral and the partial series value Im is always less than the value of the first term of the

series neglected [161. Approximating f(X) with the first term of its Taylor series expan-

sion about Xm, this first neglected term can be integrated analytically and the prior state-

ment written

I - IM< 2 Am) sin Xmp I- 12 4m)I
P p (4-34)

The convergence is thus determined by f(Xm) .

2A new sequence is then defined Im (m = 1, 2, ... , M-1) by taking the average of

two successive values of Im, following the general expression [121
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S m+I+), 1 ... M-, n= 1..., M-1 (4-35)

Taking the average of the last term in the partial series Im and the first neglected term, the

inequality is now written

1 _ip5 'fjx) (4- 36)

where

'fiXm) tXm) - 4,m" 7r/p)
nt/p (4- 37)

(Recall sin(kmp - n) = - sin(Xmp) ). The convergence of Im is now dependent on the first

derivative of f(k). Subsequent use of the average relationship (4 - 35) produces new se-

quences In that converge even faster. The last sequence reduces to the single value IM

which is closer to the real value than IM, even though no new evaluations of the integrand

Mwere made [12]. The final value II is expressed directly in terms of the starting sequence

Ilm by
IIM=2-M (m-l)Im

I M-1 M

m=1 (4- 38)

The method of averages can also be applied to Bessel functions J (Xp). Using thev

asymptotic expression for the Bessel functions, (4 - 34) - (4 - 36) remain valid by defin-

ing the values Xm as the zeros of cos(Xp - r/4 -vxt/2) and replacing f(?) with

f(X)(2htXp ) 1/2 [12).

It should be noted that (4 - 35) suggests an optimal sequence Ilm can be obtained

by taking as Xm the mean points between the zeros of cos(Xp). The sequence I I then

converges as Cf(X) and one less averaging operation is required [121.

The convergence can be speeded up even more by introducing a weighted aver-

age. The arithmetical mean (4 - 35) is replaced by a weighted average where more

weight is given to the values of Im closest to I [12]. This is expressed as
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n+ w Im + Wm+1 In+1

I -= m= .... M-1, n= .... M-1 39

For n = 1, the optimal value of weights is found from (4 - 34) to be

(m] (4-40)

where (x is the asymptotic exponent (decay) of the function f(X). After each successive

averaging operation, the order of the function controlling convergence decreases by one

unit [12], so (4 - 40) is generalized to

Wm + 1-n

k. mI (4- 41)

The optimal series Xm for Bessel functions Jv(Rk) is

m 4 2) (4-42)

When applied to an actual problem, the Method of Averages is applied iteratively

until a specified relative accuracy is achieved. The sequence In, is built up one element at

a time by integrating over successive intervals and the best solution I found and com-

pared to the previous best solution. In this manner, only the last m value of each se-

quence IM plus the value of the next integration from km to Xm+ 1 are needed to calculate

the next best solution I 1. An example of this process is shown in Figure 4 - 7. The

circled values are the only ones needed for the next iteration. The next iteration is started

by integrating the function over the next interval to obtain

16 1 S k )d , (4 -43)

where g() is some decaying, oscillating function. By applying weighted averaging to

this value with the previous results, a new solution is found that is more accurate than the

previous one. This cycle is repeated until the difference between the new ai-d previous
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Integration1 over new
1 interval + 15

44 Weighted averaging
Results from 1 1 1 2
previous iteration 5 5

1 3

1'4

1 2 3 4

13 13 13 3

1 2 3 5
12 12 12 2 12

1 2 344)

Previous best solution New best solution

Figure 4 - 7 Method of Averages example.

solutions is less than some desired relative accuracy.

The subroutine bavg was tested on the function

I fJ4(X) dX, = 1

using the optimal sequence Xm = (m + 1/4)n~ (see Test Program 2 in Appendix F). Each

half-period was evaluated using the DQDAG subroutine from the IMSL library which

uses an adaptive Gauss-Kronrod rule with 10 - 21 point quadrature to estimate the inte-

gral [14]. The results are presented in Figure 4 - 8. Curve A represents the sequence Im

(no averaging) and shows the slow convergence expected of a function that decays as
X- 1/2. Curve B depicts the accelerated convergence after straight averaging was used to

obtain In (n = m). Curve C was produced using weighted averaging. The fastest

conve. ,-nce is obtained by this case, reaching an accuracy of 106 or better after only 6

evaluations.
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4 o

0-6

-8.C

2. 4. 6. 8. 10. 12. 14. 16. 18. 20.
m

Figure 4 - 8 Relative error in numerical evaluation of (4 - 44) (E = II- [ I/ I where I is the
numerical solution).

4.2.2.1 Using the Method of Averages with exponentially decaying func-

tions. Mosig and Gardiol focused on a single layer antenna where all the source and ob-

server points are on a single interface [121. Hence, all their Green's functions decayed as

X"1/2. The Method of Averages they developed addressed only the case of algebraic

decay and did not consider the case of exponential decay obtained when the source and

observer are on separate planes.

The Method of Averages is extended here to exponentially decaying functions

using similar reasoning as above. First, consider the integral (4 - 31), where f(k) is a

continuous function with asymptotic behavior

lim (k) = C exp(-13)(. = (4 -45)

As before, a partial series lm is formed by using (4 - 33) that is as accurate as the magni-

tude of the first term neglected. Instead of using the first term of the Taylor series of f(k)

to approximate the neglected term, the asymptotic approximation of (4 - 45) is used to
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obtain

II1 < Cp exp(-PXm) [exp(-P3/p)+ 1]Ip +2 
(4- 46)

and the rate of convergence is determined by the exponential decay as expected.

Calculating the new sequence I2 by averaging successive values of Im as before,

the inequality is now written

1 2 < cp exr (-Xm) sinh(on/Ip)
+2 (4-47)

2 1This result shows Im may or may not converge faster than Im, depending on the value of

I /. Therefore, straight averaging does not guarantee the fastest convergence.

This dilemma is resolved by using a weighted average. The weight function is

found similarly as before
wm-exj 'f3li) =exp1(Xm" ')

Wm = exp(P =m)- 
(4-48)

Note, the weight function does not depend on the level of averaging as in (4 - 41), only

the value's position in the partial series. If (4 - 48) is used to calculate a weighted aver-

2age series I2, the convergence is found to be

I- 12< 0 (4- 49)

Of course, the asymptotic expression for f(k) is not perfect and the right-hand-side of

(4 - 49) will not be exactly zero. What this does show is that weighted averaging

converges faster than the partial series and straight averaging independent of P3I/p.

The bavg subroutine was tested on the exponentially decaying function [181

I -f exp(-0k) J(,pX) da

(4-50)

where I = l/sqrt(2) for p = p = 1 and I = l/sqrt(1.01) for 13 = 0.1, p = 1 (see Test Program

3 in Appendix F). In both Figure 4 - 9a and Figure 4 - 9b, curve A represents the partial
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Figure 4 - 9 Method of Averaging applied to exponentially decaying function (4 - 50) for
(a) 3=p =1; (b) 13=0.1, p =1.

series I,, curve B represents the results for straight averaging, and curve C corresponds

to the results for weighted averaging. Note in both cases weighted averaging produces

the best convergence.

4.2.2.2 Integration of exponentially decaying function as R -*0. In theo-

ry, as long as R > 0 the integrand oscillates due to the Bessel function and an alternating

series that converges is formed. In reality, as R -4 0 the periods of the Bessel function
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IV. Application and Results

become very long, making numerical integration difficult over the half periods used in

the Method of Averages. Attempting to do so typically results in overflow errors in the

integration subroutines. Since the integrand still decays exponentially independent of R,

it is easier to simply integrate over a series of finite intervals and sum the result until

some desired relative accuracy is satisfied.

4.2.3 Integration for the asymptotic case. When R --+ 0 for the Green's func-

tions where the source and observer are on the same plane, the integral blows up. This

behavior and a technique to deal with it were described in section 4.1.4. To implement

this technique, two problems must be surmounted. First, the critical value Xc must be

found where the integrand can be approximated by its asymptotic form. Second, a meth-

od to integrate the original integrand and the function J0 (x) from 0 to Xc and 0 to RXc, re-

spectively, must be developed.

4.2.3.1 Finding c. The critical value is found by ?pplying a bisection

method [19]. A function of the integrand with R = 0 (Bessel function is 1) minus the as-

ymptotic limit of the integrand is used to find the Xc where this function equals some

stopping tolerance.
rbxx

For example, the function used to find X c for GA22 is

U2b COSh(U2b (b2b - bib)) + 9~tb23 U3b sin(U2b (b2b - bib))I +
1+ 9lb23

9b13 + l+ 9b12 + b23 (4-51)

As Xc - o, (4 - 51) -+ 0. The subroutine brackets the point Xc where the function

equals the stopping tolerance (10-6 was found to work well), defining points where the

function is higher and lower than the stopping value. With the bracketing points estab-

lished, it is known the value Xc exists somewhere in the bracketed interval. The interval

is then bisected repeatedly, keeping the point where the function equals the stopping cri-

teria in the present interval. Since the stopping criteria is given and the size of the
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original interval is defined in the subroutine, the number of iterations to make using the

bisection method is known by

n = log 2  

45

A (4- 52)

where A0 is the size of the original interval and A is the given stopping tolerance [191.

Although any value greater than the kc found with this method is sufficient to de-

fine a point where the asymptotic approximation can be made, it is important not to make

X c any larger than necessary to achieve the desired accuracy. Remember, the intervals of

two numerical integrations depend upon the value of 'c; the larger these intervals are, the

more difficult and time consuming the integrations become.

4.2.3.2 Integrating to Ac and Rk c. To complete the analysis for the as-

ymptotic case, the original integrand and J0 (x) must be numerically integrated from 0 to

Xc and 0 to RXc, respectively (see (4 - 24) as an example). The difficulties with possible

singularities and the complex behavior of the original integrand for X < k3b (or X < k2a)

are handled as shown in the previous sections of this chapter. Since Xc is usually very

large, both the original integrand and J0 (x) will oscillate many times over their respective

intervals for even a very small value of R. Applying normal quadrature methods to these

functions over their entire integration intervals would be difficult. Instead, the intervals

are divided into a number of finite sized sub-intervals no greater than one half period

long. The functions are then fairly smooth over each sub-interval and normal quadrature

subroutines can be applied over the sub-intervals and the results added together.

4.3 Sample Results for the Green's Functions.

The numerical techniques developed above were applied to several of the Green's
,bxx (,

functions calculated in chapter I1. Results were obtained for the functions GA22, q22,
G bxx, b Gb

A23, q3, and GE21; all the Green's function necessary to describe the tangential elec-
obxx G b

tric fields at interface 2b for all the sources in region b. The functions ,23, Gq23, and

- 74-



IV. Application and Results

b bxxGE21 were solved for 25 values of R between 0 and 0.05 m. The functions GA22 and
bGq22 were solved for 25 points between 0.001 and 0.05 m and their asymptotic functions

were solved for 25 point between 0 and 0.005 m. A quadratic distribution [12] of points

was used so a higher concentration of data points would be taken near Rmin where the

functions change more rapidly. The quadratic distribution may be described by

(Rmax - Rmin) (i2 - 1) + RminRi (N'-2 1)i (4-53)

where N is the total number of points to evaluate. All functions were evaluated for the

following parameters:

frequency = 4 Ghz

blb = 0.0016 m

b2 b = 0.0048 m
6lb = 2.5 co
£2b = 5 co

£3b = E0

I~tb = 9~2b = i t3b =It

For these values the pole was found to be X pb = 88.73775940774 1/m. The critical value
,-bxxb

for GA2 was Xc - 88126.1171933 1/rn and the critical value for Gb22 was Xc =

88465.924790 1/m. Both critical values were found for a stopping tolerance of 10-6
Gbxx b

4.3.1 Results for GA22 and Gqz2. Figure 4 - 10a and c plot the real and

bxximaginary parts of GA22. The real part goes to infinity as expected and the imaginary

part is finite for all values of R. Figure 4 - 10b is a more detailed plot of the real values

of G22 for R > 0.01 m. This plot shows the beginning of the oscillatory nat.,re of the

Green's funttions. The real and imaginary parts of Gq22 are plotted in Figure 4 - I la

and b, respectively.

Figure 4 - 12a is a plot of the real part of the finite functions (the sum of

the two integrals in (4 - 24)) of the asymptotic expression for G A2. Note the results are
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Figure 4- 10 Plots of GeA; (a) real part, (b) oscillatory nature of real part, ,c) imaginary part.
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Figure 4 - 11 Plots of G2; (a) real part, (b) imaginary part.

finite for R = 0. Figure 4 - 12b is a comparison the complete asymptotic expression

bxx(4 - 24) and the normal expression (4 - 13) of GA22 over the points R where the evalua-

tions overlapped. The two curves are practically the same. The noticeable difference is

mainly due to the fact that data was obtained over more points for the asymptotic case
b

than the normal case for this interval. Similar results for Gq22 are plotted in

Figure 4 - 13.

bxx b ,,bxx
4.3.2 Results for GA23 and Gq23. The Green's function GA23 is plotted in

Figure 4 - 14. Although the real part of the function becomes very large as R - 0, it re-
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Figure 4 - 12 (a) Real part of asymptotic functions for GAi, (b) comparison of results for
asymptotic [A) and normal [B] representations of G.

bxx

mains finite. The function also oscillates like GA22 as R increases, though this is not

seen in the plot due to the scale. The real and inaginary parts of Gq23 are plotted in

Figure 4 - 15.

b b4.3.3 Vector plots of GE21. The Green's function GE21 represents the tangential-

ly electric field at interface 2b for a magnetic surface current source on the ground plane

and is actually a dyadic. The results from three different Sommerfeld integrals (see Ap-

pendix D) are used to calculate the vector quantities for x- and y -directed magnetic cur-
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Figure 4 - 13 (a) Real part of asymptotic functions for 42, (b) comparison of results for

asymptotic [A] and normal (B] representations of G 22.

rents. Numerical and graphical results for these individual integrals are presented in Ap-

pendix F. Assuming an infinitesimal, unit strength (1 volt/m), x-directed magnetic sur-

face current located at the origin; plots can be generated depicting the relative electric

field strength and direction for this source at a number of discrete points. Figure 4 - 16a

represents the real part of the electric field on interface 2b at 0.01 m intervals between the

values x = -0.05 m to x = 0.05 m and y = -0.05 m to y = 0.05 m with the source at x =

y = 0 on the ground plane. The length of each arrow represents the relative magnitude of
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Figure 4 - 14 Plots of G%; (a) real part, (b) imaginary part.

the field at that point compared to the greatest magnitude plotted. Several values in the

center of Figure 4 - 16a were removed because their magnitudes were so high the relative

sizes of the other arrows were too small to reveal any detail. Those values removed

produced very large arrows pointing to the top of the figure. Figure 4 - 16b represents

the imaginary part of the electric field.

4.3.4 Interpolation of data. The calculation of GE21 at the specific points

for Figurc 4 - 16 required the interpolation of data from calculated points. The integrals

bthat compose GE21 were solved for a quadratic distribution of 25 values of R between 0

- 80-



IV. Application and Results

11

8x10
11

Q 6x10

4x10
11

2x10

R(m)
0.01 0.02 0.03 0.04 0.05

(a)

10
4x10

10
2x10

C4 . , R(m)
a 0.01 0.02 0. 3 0.04 0.05

-2x10

(b)
b

Figure 4 - 15 Plots of Gbs; (a) real part, (b) imaginary part.

and 0.05 m. Obviously, all the points plotted in Figure 4 - 16 do not correspond with the

values of R where these integrals were solved. It would be too time consuming to solve

these integrals for each specific value of R necessary for these calculations (or for the

moment method calculations), therefore, interpolation was used to find values for the in-

tegrals between the calculated values.

A simple polynomial averaging interpolation [12] was used to calculate the

data for Figure 4 - 16. The method fits two second order polynomials to the four points

immediately surrounding the interpolated point R (see Figure 4 - 17), one equation for
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Figure 4 - 16 Vector plot of Gev for x-directed source; (a) real, (b) imaginary parts.
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Ri_ 1, Ri , and Ri+ 1 and the other for Ri , Ri+ 1 , and Ri+2 . The two polynomial equations

are solved for R and the results averaged to obtain the interpolated value. This

technique was executed in Mathematica with the polyAvg.m package and the results

plotted in Figure 4 - 16 using the vectorPlot.m package, both listed in Appendix F.

Polynomial averaging interpolation is also well suited for interpolating data to use in the

surface integrations for the moments method.

Average value

Ri 1  Ri  Ri+1 Ri+2

R

Figure 4 - 17 Polynomial averaging.

4.3.5 Determining error estimates. Since the integrals used to calculate the

Green's functions must be solved numerically, it is important to have some idea of what

relative errors are inherent in the solutions, The quadrature subroutines used from the

IMSL libraries return an absolute error estimate, where the difference between the nu-

merically derived result and the actual solution for the integral is less than or equal to the

absolute error estimate [14]. The custom integration subroutines written for this research

return the difference between the results of the last two iterations as the absolute error es-

timate. The absolute error estimates obtained for the integrations over the different

intervals (see Figure 4 - 4, page 61) are then summed and divided by the final result to

provide an overall relative error estimate. The relative error estimate reflects the
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precision, or significant digits, of the result. For example, a result with a relative error

estimate of 10-6 has a precision of 6 significant digits. Unfortunately, the error estimates

for the principle value integrals cannot take into account errors generated by the approxi-

mated pole position. For this reason, it is important that the accuracy of the pole

positions be much greater than the requested relative error for the principle value

integrals.

- 84-



V. Conclusions

A theoretical model for an aperture fed stack-patch microstrip antenna based on a

full-wave analysis has been developed. The Green's functions required in the mixed

potential integral equations (MPIEs) were constructed and numerical techniques to

evaluate the Green's functions found. A moments method was discussed, but not

actually implemented, to evaluate the MPIEs for the electric and equivalent magnetic

currents of the antenna. The remainder of this chapter answers the research questions

posed in the introduction of this thesis, suggests improvements and possible applications

for this research, and discusses some of the general observations made during the study

and solution process involved.

5.1 Answers to Research Questions.

5.1.1 What are the Green's functions necessary to solve for the various currents

of the antenna? The Green's functions found in chapter III and detailed in Appendix D

are a continuum (integration) of elementary, cylindrical wave functions, generated by an

infinitesimal source at the 'various interfaces of a stacked-patch aperture fed microstrip

antenna. These type of integrals are generally referred to as Sommerfeld integrals. The

Green's functions account for different observation frequencies, dielectric layer

thicknesses, dielectric permeabilities and permittivities.

5.1.2 What are the mathematical characteristics of the integrands in the Green's

functions? The integrands of the Green's functions are decaying oscillatory functions

with semi-infinite (0 to -*) intervals of integration. All integrands are complex for X < k0

and real for X > k0 , where X is the variable of integration and k0 is the free-space wave

number. The integrands of the Green's functions with source and observer points on sep-
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arate planes decay exponentially and the integrals remain finite as R - 0, where R is

the radial distance between the source and observer points. The integrands of the

Green's functions for co-planer source and observer points decay algebraically as V 1/2

and the integrals blow-up as R -4 0. An alternate asymptotic expression was found for

small R for these cases.

The cut-off frequencies for the surface waves are determined by the zeros of the

denominators in certain integrands. The zeros defime simple poles in these integrands

and require these integrals be evaluated in the Cauchy principle value sense. The zeros

of the denominators are located accurately using numerical methods and the principle

values of these integrals evaluated. With a proper choice of material parameters and op-

erating frequency, only one pole is present in these integrals (only one surface wave

mode propagates), greatly easing the evaluation of these integrals.

5.1.3 How can the Green's functions be evaluated numerically? The integrals in

the Green's functions are evaluated with a combination of commercially available

quadrature subroutines from the IMSL libraries and custom subroutines written to handle

the specific difficulties of these integrals. A subroutine is written to find the principle

value of an integrand with a simple pole, where the location of the pole is approximated.

A subroutine to evaluate an integrand from some finite point to infinity using the Method

of Averages is developed and the original technique proposed by Mosig and Gardiol 1121

is expanded to also work with exponentially decaying integrands.

As R --+ 0, the Method of Averages brakes down and alternate methods found.

Those integrals that are finite at R = 0 (integrand decays exponentially) are integrated

over a series of small, finite intervals and these results summed until a desi,.-d accuracy,

determined by the user, is met. Asymptotic approximations for those integrals that are

infinite at R = 0 (integrand decays as X-112 ) are developed and special subroutines to

integrate the resultant oscillating functions over large intervals written.
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5.1.4 What methods can be used to reduce computational time? The main goal

of this research was to construct the Green's functions and demonstrate the resultant

integrals could be numerically evaluated. Computational speed was a secondary concern,

but some efficient techniques were developed. All integrands have a real part over the

interval . = 0 to -c and an imaginary part from X = 0 to ko. Numerical integration rou-

tines are applied separately to the real and imaginary parts of the integrand over their

respective intervals. Thus saving time by not integrating over an interval where the

imaginary part of the integrand is zero.

It is shown the integral of a decaying, oscillating function from a finite point to

infinity always converges. By integrating over the half-periods of the oscillating func-

tion, a decreasing, oscillating, series can be formed. A partial sum is then taken that is as

accurate as the first term of the series neglected. The rate of convergence is increased by

averaging the results of the partial series. The convergence is speeded up even more by

applying the weighted averaging scheme of the Method of Averages. It is further shown

that for exponentially decaying integrands, weighted averaging is consistently the most

efficient method to use.

The use of the asymptotic approximations should be restricted to cases of small

R. Although the asymptotic approximations can be used for any value of R, the larger R

becomes the more oscillations appear in the integration intervals. The intervals must

then be divided into more sub-intervals, so the functions are "sufficiently smooth" for the

standard quadrature integration subroutines to work; thus increasing computation time

greatly.

The moments method analysis requires surface integration of the Green's func-

tions over the source and observer coordinates, p' and p respectively. The integrands of

the Green's functions are dependent on the radial separation of the source and observer

points ( R = ip' - pl ). To numerically evaluate the integrals of each Green's function at
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every value of R required in these surface integrations would be extremely time con-

suming. It is more efficient to evaluate the integrals in the Green's functions over a finite

number of R values and then interpolate the values of the integrals between these solved

values. It was shown polynomial averaging may be an acceptable interpolation tech-

nique. The surface integrations can then be done using the interpolated values of the

Green's functions.

5.1.5 How can the solutions of the Green's functions be used in a moments

method solution for the currents of the antenna? When the source and observer are in

the same plane, both non-asymptotic and asymptotic expressions for the Green's func-

tions must be used. The surface of each conductor or aperture must be divided into a

number of rectangular, overlapping current cells for the moments method. Surface inte-

grations of the product of the Green's functions and test or basis functions over the

surfaces of the current cells can then be accomplished. When the source and observer

points are in separate cells, the radial separation R is large enough to use the interpolat-

ed values from non-asymptotic expressions of the Green's functions. When the source

and observer points are in the same current cell, the interpolated values from the asymp-

totic expressions should be used along with the analytic evaluation of the 1/R term. The

dimensions of the individual current cells should be small enough to make the evaluation

of the integrals in the asymptotic expression reasonably efficient. Using the non-

asymptotic expression when the source and observer are in separate cells, and the

asymptotic expression when they are in the same cell, avoids switching between the two

expressions of the Green's functions in the middle of a surface integration. When the

source and observer points are on separate planes, no asymptotic approximations are

necessary and the surface integrations can be accomplished using the interpolated values

of the Green's functions. These methods can then be used to fill the sub-matrices and so-

lution matrix of the moments method. The solution for the currents of the antenna can
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then be found using normal matrix solving techniques.

5.2 Future Improvements and Applications.

5.2.1 Improvements. Much remains to be done to complete this line of research.

Only five of the Green's functions were coded and evaluated, the remaining functions

must be written as Fortran functions and the necessary subroutines applied to evaluate

them. A program must also be written to implement the moments method to solve for the

currents of the antenna. It will then be possible to compute the antenna's input imped-

ance, resonant frequency, bandwidth, and other characteristics as they vary with changes

in dielectric permeability, permittivity, and thickness; and changes in aperture and patch

sizes, and relative positions.

The theoretical model must be validated against experimental results. Actual mi-

crostrip antennas should be constructed and tested, and the results compared to those ob-

tained with this model. If experimental testing cannot be accomplished, it may be possi-

ble to compare results of this theoretical model with results from some kind of finite-ele-

ment simulation.

Further analysis of the Green's functions is necessary. The Green's functions de-

veloped in this paper are applied only to the tangential fields at the various dielectric and

ground plane interfaces of the antenna. In any practical antenna analysis, it is desirable

to know what far-field pattern the antenna generates. To accomplish this, it will be nec-

essary to find asymptotic forms of the Green's functions for large R and z. Once the

currents of the antenna have been found with the near-field Green's functions and mo-

ments method, the currents can be used with the far-field Green's functions to determine

the far-field pattern of the antenna.

The effect of surface waves should be further explored. Surface waves will effect

both the far-field of the antenna and the radiation efficiency. Power radiated as surface
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waves will decrease radiation efficiency. Certain configurations of dielectric

permittivities, permeabilities, or thicknesses may decrease the power radiated in surface

waves and increase radiation efficiency, or enhance the far-field pattern of the antenna.

The numerical integration routines can possibly be improved. The quadrature in-

tegration subroutines from the IMSL libraries were used simply for convenience. With

further study of the integrands in the Green's functions, it may be possible to develop

more efficient integration routines or find more efficient ways to apply the IMSL

subroutines.

A very simple, basic approach was taken to find the Cauchy principle value of

those integrals with simple poles and better methods may exist. Mosig and Gardiol [121

mentioned two possible methods, folding around the pole and extraction of the singulari-

ty. It is also desirable to obtain a better estimate of the error in the principle value due to

the approximation of the pole location.

5.2.2 Ideas for future applications. The most desirable goal of this line of re-

search is to develop a set of design criteria for an aperture fed stacked-patch microstrip

antenna. Once the model proposed in this paper is complete, it should be possible to

analyze the effect different material parameters have on antenna performance. By find-

ing out how such characteristics as resonant frequency, bandwidth, radiation efficiency,

radiation resistance, and far-field pattern change with changes in different antenna pa-

rameters, it should be possible to determine what parameters produce the best design for

a given application.

The results of this research are by no means confined to the study of aperture fed

stacked-patch microstrip antennas. The Green's functions found in this paper along with

the MPIEs can be applied to the study of any two dielectric layer structure. The Green's

functions can be used in scattering analysis of two layer structures, to study two layer mi-

crostrip antennas with circular or even arbitrarily shaped patches, or to study stacked
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patch antennas with microstrip or coaxial feeds instead of an aperture feed.

Different types of aperture feeds may also be explored. If a microstrip antenna

can be fed through an aperture by a microstrip, can it by fed through an aperture by a

rectangular or circular waveguide? What kind of modes would be excited in a

waveguide by an aperture coupled microstrip antenna? Would a microstrip antenna

(stacked patch or single patch) fed through an aperture by a waveguide have desirable

characteristics? Would it be practical? As with any research, as many new questions

arise as are answered.

The results of this research are particularly applicable to the study of microstrip

antenna arrays. Because surface wave effects are included in the Green's functions, mu-

tual coupling between array elements can easily be accounted for by extending the mo-

ments method analysis. This is very important, since microstrip antennas are usually em-

ployed as parts of an array.

5.3 General Observations.

During the course of any project, it is often observed that some techniques or

methods work better than others. Whether they work better simply because they save

time or are easier to use, it is beneficial to pass along such information so future research-

ers may profit from the experiences of others. Great use of commercial software was

made during this research and writing custom software was always a last resort. Finding

a misplaced comma or errant semicolon can often consume several hours or even days, as

anyone who has ever written software can attest. The IMSL subroutines were found to

work very well, both when directly integrating over some interval and when used as part

of custom subroutines. The documentation was well written with clear examples of how

to use the subroutines.
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The new software package Mathematica was used extensively during this re-

search. The construction of the Green's functions, starting from the general solutions of

the vector potentials and boundary conditions through to the final expressions, was ac-

complished totally with Mathematica's symbolic equation solving abilities. Deriving the

Green's functions with pencil and paper would have been a horrendous task, considering

the number of equations that had to be derived and the complexity of the equations. Typ-

ical mistakes such as forgetting to change a sign or leaving off a subscript were totally

eliminated. Once a derivation process had been defined in Mathematica for one case (a

HED on interface 2b for example), the same solution process could be used for all similar

cases (like a HED on interface 3b). Constructing all the Green's functions for this re-

search was greatly eased using this technique. Also, functions that must be called from

external libraries in Fortran (such as Bessel functions) are built into Mathematica.

Mathematica's ability to plot functions was very helpful in determining the general

behavior of the integrands of the Green's functions. Data generated by Fortran programs

could be read by Mathematica and plotted or used as data in further calculations within

Mathematica.

It was hoped at the beginning of this research to use Mathematica for all numeri-

cal problem solving and avoid using Fortran at all, but this was not possible. While

Mathematica's numerical integration function is very sophisticated (no need to separate

functions into real and imaginary parts, integration paths can be defined in the complex

plane, etc.) it is rather slow. Integrations that took seconds to do in Fortran on a main-

frame took several minutes with Mathematica running on a personal computer or

workstation. While it was certainly possible to numerically evaluate all the integrals in

the Green's functions for all the required values of R with Mathematica, it would have

taken days. Mathematica was very useful in prototyping many of the subroutines even-

tually written into Fortran. Various numerical problem solving concepts could be quick-
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ly explored in Mathematica, rather than go through the normal write, compile, run,

debug cycle of writing Fortran code. While Mathematica may not be able to replace

Fortran, it is certainly a useful problem solving tool to use in conjunction with Fortran.

The approach to analyzing the aperture fed stacked-patch microstrip antenna in

this paper was based on the MPIE and the Green's functions solved in the spatial domain.

Obviously, this is not the only approach. There are several different approaches, some of

which are discussed in the literature review in chapter II. Just as the MPIE solution gives

certain insights to this problem and has certain advantages, these other methods may

provide different, but advantageous points of view. These different advantages should be

kept in mind as this line of research continues.
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The techniques needed to derive the Green's functions for a complicated

structure, such as an aperture fed stacked-patch microstrip antenna, are more easily un-

derstood if a simple example is studied first. The Green's function for a single HED in a

homogeneous medium, for which an analytical solution in spherical coordinates is avail-

able, will be developed first. The result will then be adapted to cylindrical coordinates

which are better suited to the study of microstrip structures.

A.1 HED in a Homogeneous Medium

A unit electric dipole has an infinitesimal length dx in which circulates an electric

current I. These two quantities produce a dipole moment ldx which is set to unity (I A

m). The dipole is set at the origin of a rectangular coordinate system with the current

flowing in the positive x-direction (see Figure A - 1).

z
E, J~t

e r

I dx .. y

X

Figure A - 1 Coordinate system for HED [12j.
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The volume current density for this dipole is

J = R" 8(r) (A - 1)

where 5 is the Dirac delta function and the unit dipole moment (Idx = 1 A m) is implied

in the right-hand side of (A - 1) for dimensional consistency [121. The surface current in

the z = 0 plane for a microstrip structure is defined as

is = f J dz

Using the cylindrical coordinate representation of the Dirac function

27cp (A - 3)

results in

is= p)
S 2itp (A - 4)

In a homogeneous medium, the magnetic vector potential created by an electric

current is parallel to the current [12] so that

A = T A, (A - 5)

As will be seen in Appendix B, the A. component must be a solution of the Helmholtz

equation

(V2 + k2)A,= 0  (A-6)

It must also satisfy the boundary condition

I aa+a~- 5p)
14 ( az zI 2nrp (A - 7)

where Ax+ is just above the z = 0 plane and Ax. is just below the plane. The A. compo-

nent must also satisfy the Sommerfeld radiation condition.

From symmetry considerations, Ax can only be a function of the distance r from

the origin [121. The analytical integration of the Helmholtz equation produces the result
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A = exp(-jkr)
47c r (A - 8)

Using the Lorentz gauge condition, the scalar potential is

V = Ip cos O ex(-jkr) (A - 9)

which is actually the potential created by two point charges. Using the electrostatic rela-

tionship linking the point charge and dipole potentials (3 - 93) gives the potential of the

point charge

Vq I exp(-jkr)= Ax
4rjoE r jCOPE (A- 10)

The potential for the point charge could just as easily been determined directly from the

Helmholtz equation without first evaluating A, but only for the homogeneous case. For

an inhomogeneous medium, A must be found first as demonstrated in this simple

example [12].

A.2 Cylindrical Coordinate System.

The magnetic vector potential for the infinite homogeneous case displays a spher-

ical symmetry, as can be seen by the vector potential's sole dependence on the coordinate

r in (A - 8). However, the microstrip structure of this analysis has circular cylindrical

symmetry, where all the boundary conditions appear in the z = constant planes. The so-

lutions obtained here must then be expressed in circular cylindrical coordinates to be use-

ful. The solution of the Helmholtz equation in these coordinates is [12]

V= Bn(kpp) hI(kzz) h2(no) (A - 11)

where h 1 and h2 are trigonometric functions (cos or sin) or a linear combination thereof;

n is an integer since periodicity in 0 is required ( n --0 corresponds to a 0-independent so-

lution); Bn is a solution of the Bessel equation (JOn, Yn, H" ), H(2 ) or a linear combina-

tion); and k and kz are complex quantities called spectral variables (12] (which are thep

same as eigenvalues) and must satisfy the condition
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k2 +k2 =k2
k+ k = k (A- 12)

The present symmetrical case is independent of 0, so n = 0 and

V = HO (kpP) exp(-jk, z1) (A - 13)

The Sommerfeld radiation condition of (3 - 29) is met in the radial direction by the Han-

kel function of the second kind. The radiation condition is satisfied in the z -direction if

Im(kz) < 0, Re(kz) > 0 (A - 14)

The superposition principle applies since the Helmholtz equations are linear, therefore,

any linear combination of elementary solutions V is also a solution [12].

For an antenna problem, the domain is considered infinite and the spectral vari-

ables take on a continuous variation [20] rather than the discrete values of a bounded

problem. Therefore, the general solution is an integration of (A - 13) over either spectral

variable k or kz [12].P

Integration over kz produces a Fourier transform where integration over kp

produces a Hankel transform. Integration over k is better suited to geometries withP

axial symmetry [12], so the solution for AX will be

= f T(kp) 4#p,kz) dk,

(A- 15)

where T is an arbitrary function that will be determined later. The integration path C is,

in principle, arbitrary between --c and -c; but the nature of the integrand and conditions

(A - 14) place certain constraints on C.

The integrand of (A - 15) contains the complex function kz defined as

kz= ;k' - (A- 16)

The conditions (A - 14) are used to determine which branch (Riemann sheet) of the func-

tion (A - 16) is selected. The requirement of a negative imaginary part determines a cut-

2off in the complex plane for k2. Because the lower part of the kz plane maps over the
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2whole k;2 plane, the branch cut is the positive real axis (see Figure A - 2b) [121.

The equation of the branch cut is
Irr~k2) = 0, Re(k 2) >0(A -17)

Using the notation

kp= + jv (A - 18)

the corresponding branch cuts in the k plane are found from (A - 12) to beP

X=O VV
v=O for.l<k (A-19)

They have their beginning at the ramification points k = ±k as shown in Figure A - 2c.
p

The second condition on kz demands the real part to be positive, leading to Irnkz) < 0

and then to kiu > 0 [12].

The forbidden regions in the three complex planes are shown by cross-hatching in

Figure A - 2. These forbidden regions require the contour C to cross quadrants 1 and 3,

passing through the origin and closing upon itself at infinity (Figure A - 2c). If no singu-

larities other than the ramification points ±k are present, the contour can be deformed

into the real axis X [12].

1)

C

L 
k

(a) (b) (C)

Figure A. 2 Transformation of complex planes with existing branch cuts and forbidden

regions: (a) kz plane, (b) k2 plane, (c) kp plane (121.
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It must also be noted that the Hankel function creates an additional branch cut in

the k plane located on the negative real axis. This can easily be removed as will bep

shown later.

The function T can be found now that the topology of the k plane has been de-p
termined. Applying the uniqueness theorem by identifying (A - 15) with the previously

obtained solution (A - 8) yields

_L exp(-jkr) 7q k,) HO°)(kpp)exp('jk z1)dkp4n (A - 20)

The value of T can be found by using a Hankel transformation [12], producing for the

vector potential

A2 -p g.-p exp(-jkr)Ax f (kpp) jk- z exp(-jk zj) dkp = r 24nC r (A - 21)

The integrand of (A - 21) becomes singular at the points k = ±k, but these singu-P
larities are integrable (zero residue). The singularity of the Hankel function is eliminated

by the factor k in the integrand, therefore, the contour C can be placed along the realP
axis k = X [12]. Noting this and using the relationshipP

H H(1p) .2) nldX = 2j Jn(XP) &X2) X n+l d
(A - 22)

produces a form better adapted to numerical calculations.

Ax - d;( I exp(- z() p.L= exp(-jkr)
OX~f ) u 4n r (A - 23)

where

u = jkz = 'i' - k2  (A - 24)

This last expression for Ax greatly eases numerical integration procedures by re-

ducing the integration to a semi-infinite interval. The physical significance of these

developments is that a spherical wave can be expressed as an infinite sum (integral) of
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cylindrical waves which have transverse wave numbers (eigenvalues) k varying contin-
P

uously from 0 to 00 [12].

A.3 HED in a Microstrip Structure.

There are two main differences between the homogeneous case discussed above

and the case of a HED in a stratified medium. The first is the vector potential is no long-

er parallel to the dipole [20]. A vector potential only parallel to a boundary is insufficient

to simultaneously meet the boundary conditions of continuous A,, and V across the

boundary (All is the component of A parallel to the boundary). These boundary condi-

tions can only be met if a second component of the vector potential perpendicular to the

boundary is present. The second difference is the Sommerfeld radiation condition no

longer applies for the z-dependence within the finite thickness dielectric layers. In the

infinite medium the dependence is still of the form exp(-uz), but within the dielectric

layers the dependencies are of the form sinh(uz), cosh(uz) or a linear combination.

Which function (sinh, cosh or both) to use is dependent on the boundary conditions (see

Appendix B).
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For a time dependence of ej Ot, Maxwell's equations take the form [101

V x E = -jpH (B- 1)

V x H =jE (B- 2)

V. E=O (B -3)

V. H=O (B -4)

for the source free regions of the microstrip antenna. The sources only exist at the

boundaries, therefore, their effects only appear in the boundary conditions. Since both

electric and magnetic sources must be accounted for, they will be discussed separately.

The boundary conditions for electric sources will be developed first followed by the

boundary conditions for magnetic sources.

B.1 Boundary Conditions When Only Electric Sources Are Present.

The tangential E and H fields at a boundary must be continuous unless a source

(electric or magnetic) is present [10]. If only an electric source is present, the tangential

magnetic field must be discontinuous by the value of the surface current on the boundary.

For the case of a surface current at interface 2b and no surface current at interface 3b, the

boundary conditions are
XX" b E2- E bj2 = 1 (B - 5)

X (H22- Hb2) = J2 (B-6)

evaluated at z = bIb and

SX(E3 2 - E22 )= 0 (B- 7)

X X (H32 - H22) = 0 (B-8)

evaluated at z = b2b.
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The tangential magnetic field is continuous at interface 3b %%.iere there is no surface

current present. Since there is no electric field in a prefect conductor, the tangential

electric field at the ground plane (interface 1b) must be zero:

bX x Eb2 = 0 (B- 9)

An equation similar to (B - 6) could be used to determine the electric current on

the ground plane, but (B - 9) completely defines the perfect electric conductor boundary

[121. There is no need to find the electric surface current induced on the ground plane for

this analysis.

Maxwell's equations (B - 1) - (B - 4) along with the boundary conditions for the

tangential fields (B - 5) - (B - 9) and the continuity equation (3 - 13) completely define

the problem of the diffracted fields. The boundary conditions for the normal fields are

derived from the above equations by taking the transverse divergence of (B - 5) - (B - 9)

[121 to obtain

i. (e2b E22" -Eb E12)= q2 (B- 10)

. (92bH 2-91bH 2)=O (B-l)

i*(63bE32- E2b E22)= 0 (B - 12)

(93b H3 2,H2 (B - 13)

at interfaces 2b and 3b, and

Z H 2 =0 (B - 14)

at the ground plane.

The corresponding boundary equations for the magnetic vector potential are now

found by using (3 - 5), (3 - 7) and the Lorentz gauge condition (3 - 91)

E = -jcA - VV

H =1 V x A

V. A + jo IV =0

- 102 -



Appendix B: Development of Boundary Conditions

which are repeated here for the convenience of the reader. Using these equations with

Maxwell's equations, (B - 1) - (B - 4), it is seen that the vector and scalar potentials are

solutions of two homogeneous Helmholtz equations [12]:

(V2+k2) A= 0  (B-15)

(v+k2) v=o (B-16)

where k is the wave number of the respective medium.

By applying (3 - 5) to (B - 9)

Zx WAb2 + VVb12 )= 0 (B- 17)

is obtained at the ground plane. Since V in (3 - 5) is defined within in arbitrary constant,

the value V'12 = 0 is assigned at the ground plane and (B - 17) becomes

V'12 = 0 (B- 18)

Z x Ab2 =0 (B- 19)

at z = 0. Equation (B - 19) limits (3 - 15) to having only the sinh(ulb z) term, since the

cosh(ulb z) term does not go to zero at the ground plane and violates (B - 19). Using

(B - 18) with the Lorentz gauge condition determines the boundary condition for the

bnormal component of A 12 at the ground plane:

AMl = 0
D)z (B - 20)

which implies the cosh(ulb z) term in (3 - 16).

At interface 2b (z = bib), (3 - 5) is used in (B - 5) to obtain

x (-jAb2 -VV2 + j(oA12 + VVb12) = 0 (B-21)

which expands to

j(OAb 2 + Vb22 = jAI 2 + V 2
ax ax

b a abjcJAya2 22V = jwoA b + Vbay ay (B- 22)
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The work required to move a point charge through the conservative part of the electric

field from infinity to either side of the boundary must be the same [21]. Therefore, the

scalar potential must be continuous across the boundary and at interface 2b (B - 22)

becomes

A22 =- V12 (B- 23)
btan btan (B 24)A22 = A 12

Similarly at interface 3b

32 = 22  (B- 25)
btan btanA3 2 = A 2 2  (B -26)

Applying (3 - 7) to (B - 6) yields

1~~ ~~~4 19 D M)l1(-_o~ 2  ~z2
92b -91b "Z (] a2 b x (- 27)

and

(2b aZ Alb A Z (I2baX Alb ax) (B-28)

where the left-hand-side of (B - 27) is the y -directed magnetic field due to an x -directed

electric current. With the current in the negative x-direction, the magnetic field points in

the positive y -direction, obeying the right-hand rule convention. The left-hand-side of

(B - 28) is the x -directed magnetic field and is equal to zero since the coordinate system

is oriented along the x -directed current. Since only two components of the magnetic

vector potential are needed to completely define the electromagnetic fields [20], Ay is as-

sumed uniformly zero leaving ( LaA 2 - Az2 =0
9J2b aX 9lb aX 0 (B- 29)

which reduces (B - 27) to

9-2b aZ l1b aZ (B - 30)
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at interface 2b. Using (3 - 7) on (B - 8) similarly yields
b b

_32= 1 Ax22

93b aZ 92b az (B -31)

at interface 3b. Finally, applying the Lorentz gauge condition to (B - 23) and (B - 25)

produces
1 V. A b 1 V-Ab

Elb 9lb 1 2b 42b (B - 32)

from which (3 - 24) is derived, and
1 V.Ab 1 b

- -A22 ~ V. A22 (B-3
E2b 9l2b E2b I9t2b (B - 33)

from which (3 - 28) is derived.

The scalar and vector potentials are related to the surface charge distribution at

interface 2b by using (3 - 5) with (B - 10) to get
abj,0 (E2b A22- Elb Az12) + E2b - b Z= -q2

(B- 34)

The boundary conditions for electric sources at the other interfaces are found similarly.

The two Helmholtz equations (B - 15) and (B - 16) along with the above derived

boundary conditions define, in principle, both potentials. However, in order to obtain a

unique solution an additional constraint must be imposed. This constraint is known as

the Sommerfeld radiation condition

lim r -- + jk) = 0
r-400ar

where V is any scalar solution of Helmholtz's equation. The radiation condition

constrains the solutions to those that propagate away from the sources and decrease with

distance [12].

From these boundary equations, it may appear the scalar potential V is associated

with the surface charge distribution q and the vector potential A is associated with the
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surface current J. But, where the vector potential A is determined solely in terms of the

surface current J, the scalar potential V cannot be expressed only in terms of the the

surface charge. Because of the presence of the Az term in (B - 34) the determination of V

requires previous knowledge of the vector potential A normal to the currents. In a

homogeneous medium where the permittivity and permeability are not discontinuous, the

normal component Az vanishes and V is independent of A. In an inhomogeneous

structure, the normal component Az is always present [12].

B.2 Boundary Conditions When Only Magnetic Sources Are Present.

For the case when only a magnetic source is present, the tangential electric field

must be discontinuous by the value of the magnetic surface current on the boundary. The

only magnetic sources for this analysis are the equivalent magnetic sources used to model

the aperture in the ground plane. Since the magnetic sources are on the ground plane,

special care must be taken in deriving the boundary conditions at interfaces lb and la.

The boundary condition at interface lb is

-Y x E12 =M 1  (B- 35)

The corresponding boundary equations for the electric vector potential are found

by using (3 - 6), (3 - 8) and the Lorentz gauge condition for magnetic sources (3 - 92)

E=-IVxFE

H -jo)F -VVm

V. F +jo-wLVm =0

repeated here for convenience. Separating (B - 35) into x and y components produces

b
Ey12 = Mbxl (B- 36)

Ex12 = 0 (B- 37)
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where the left-hand rule convention for magnetic sources is demonstrated in (B - 36).

Applying (3 - 6) to these two equations yields

a F b1_L x z12 = _Mbx2
Elb" z aZ x (B3- 38)

and

Elb a x ])= 0 (B - 39)

Only two components of the electric vector potential are needed to completely

define the electromagnetic fields, therefore, Fy is assumed uniformly zero leaving

0FbI2 =0

ax (B - 40)

which reduces (B - 38) to
b

_L Fx2 :-Mbl
Elb az x, ( - 41)

at z = 0. The z-dependence of F in the dielectric layers for this problem is in a

cosh(ulbz) or sinh(ulbz) term which is not affected by the a/ax operation in (B - 40),

btherefore, only the sinh(ulbz) term can be used in (3 - 61) for Fbl2 to meet the boundary

condition. Also notice, since the source is on the ground plane, the magnetic scalar

potential Vm cannot be set to zero at the ground plane as with the electric sources at the

dielectric boundaries. The boundary conditions at interface la are the same as above and

the boundary conditions for the dielectric boundaries (2a, 2b, and 3b) are found from the

boundary conditions for electric sources by using duality.
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C-1 HMD on Interface la.

Nxl(k) = Cia X exp~bia U2a) secla uia)

N:x1(k) = Ela X [Uia + Ea12 U2a tanqla U1,)]

a X2

-dik = 2a ~2expblaU2a) (1 - 9a12 £-a12) sec1~bia Ula)

C.2 HED on Interface 2a.

-a2 gila X CSCI~bia ula)

NxW= l1la X expbi a U2a)

Nz2(X)= 9 a -(12 E212) sectbi, uja)

Na.(X = 92aX2 expb 1aU2 a)( ga 1a2 Ea1 2)

C.3 HMD on Interface lb.

Nbxl(X) =-Elb X. [Eb23 U3b cosh(b2b U2b) + U2b sinlI~b2b U2b0] sec1~blb Ulb)

N=1 Elb X~ [U2b COSh(b2b U2b) + Eb23 U3b sin1~b2i, U2b)] sec1~blb Ulb)

Nd1 xlO) lib X U2b exp~b2b U3b) secI~blb Ulb)

N b A~) lb X [Ub -i Eb13 U3b tafltblb Ulb)] U2b COShU2 ?, (b2b - bib)
exlj [Eb23 Ulb U3b + r£b12 Uhj tanl~blb Ulb) sinh(U2b (b2b - bib))l

[- b13 Ebl3 + Cosh 2(U2b (b2b - bib))] 2 Uhb cscl42 bib Ub

b 2+ [- b12 Eb12 Uhb - 9.b13 Eb13 Uib + AMb2 Cb23 Uhb lb)
Naz1W = Elb * 2 CSCh(2 bib Ulb) Sinh 2(U2b (b2b - blI))

I+ [9Lb23 - 9~b13 Cb12 - 9bIt12 £-b13 + Eb23]
U2b U3b CSC142 bib Ulb) sinh(2 U2b (b2b - bib))
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41 I123 4b23] C-1b U1 b U2b csc1~blb U1lb) cosh(bi b U2b)

b X2+ 9b12 + 9b13 Eb23 1 Elb ub seclb Ulb) siflh~blb U2b)

Nbz1(X + 413 Elb - igb23 E2b) U3b Cosh(b2b U2b)
I[+ (9b12 Elb - E2b) U2b siflhb 2b U2b)I

*U2b secN bl b U 1b) cosh(U2b (b2b - bIb))

+ 134b £b13 - 9ib23 4b23) U3b cosh(b2b U2b)1t+ (9b12~ Eb13 - Eb23) U2b sifllb2b U2b)I
* 2b U3b seclb Ulb) siflFU2b (b2b - bib))

1 +9b2 Eb,23] Elb Ulb U2b Csch~b1j, Ulb) Siflhblb U2b)

+[b2 - 9~b13 4b231 Elb Uhb secFb 1Ub) Cosh(blb U2b)

N b (X) X 2 + b113 Elb + g~b23 E2b) U3b SinlIb2b U2b)1Iz (- Ib2 Elb + Er2b) u2b cosh(b2b U~b)
S*U2b sec1~blb Ulb) COSh(u2b (b2b - bib))

+ [(- Ib13 Ebl3 + PIb23 Eb23) U3b sint~b2b U2b01
L+(- 9-b12 Ebi3 + £-b23) U2b cosh(b2b U2b)

* 2b U3b seclb Uib) sifl1*2b (b2b - bib))

2f- 9~b13 lb + E-3b 1 U2b secI~blb Uib) cosh(u2b (b2b - bib))l
Ndz1 (X)=-, expb2b U3b) U2b X) + 423Eb + E3b Eb ) Ub cscbb Ul)

I *sifl(U2b (b2b - bib))

C.4 HED on Interface 2b.

Na2?)= Llb X[U2b COSh(U2b (b2 t, - bib)) + 4ib23 u3b SinNhU2b (b2b - bib))] cscl~blb Ulb)

Nx()= - 91'b ?, [4tb2 U3b cosh(b2b U2b) + U2b sifl1b2b U201l

Ncx2 (X) = 91tb X [U2b cosh~b2b U2b) + g.b23 U3b Sin1~b2b U20)]

Nx()= 91b X exp~b2i, U3b) U2b

D[1 -9b13 ebi3] Uh eb lbU
b X2 ~~+1-912E1) Uhb + (- 4ib13 £-b 3 + Jgb23 E2)Ub

Naz2() = 1b *secI~blj Uib) Sinh 2(U2b4b2b - bib))
+ [9~b23 - 9~b13 E-bi2 - 4~b12 r£b13 + £-b23]

U2b U3b secI~blb Ulb) sin142 U2b4b2b - bib))
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[- 2 + 4~b23 Eb13] Iiib Uib siflbb 112b)
+ [1 - 4±b23 Eb23] 91ib Ulb 112b COSh(bib 112b) tan~blb 111b)

b + b E-bi3 - 9L2b 4b23) U3b COSh(b 2b U2b)1Nbz2+ +(- 12b + 91tb 4b12) U2b siflhb 2b U2b) J
* U2b cosh(U2b02b - bib))

+ fOgb 13 £bi3 - 41b23 Eb23) U3b Cosh(b2b 112b)]j+(- 4~b23 + 9~b13 4b12) U2b sinl1b2b U2b)
* P,2b U3b siflIU2b(b2b - bib))

[Ebl2 - Pgb23 Eb13] 911b Uib cosh(blb 112b)
+ [-1 + 1gb23 Eb23] Il'b Uib 112b sifllbb U2b) tan1~blb Uib)

Nb2 X)X 91b Ebi3 + 92b Eb23) 113b sifl1~b2b 112b)
Nc2() + + k - 91 4b12) U2b Cosh(b2b 112b) .

* 112b cosh(U12b02b - bib))

+ [(- 4-b13 £-b13 + Pgb23 £-b23) U3b sif1b2b U2b)1
[ (i '23 - 9~b13 Eb12) U2b cosh(b2b U~I,)

4 I2b 113b slflh(2b02b - bib))

9lP3b - 1ib £-b133 112b cosh(U2b (b2b - bib))
b xbbUb U2 +2 [(PLb - 1b 4b12) U3b tn~l

Ndz( xpb~b11b)U~b - (1b12 - 91ib Eb23) Uibtnbb Ulb)j
(*sjn4U2b (b2b - bib))

C.5 flED on Interface 3b'.

Na3xA) = 9bX 112b csch~blb Ulb)

NxW= 92b X [Ulb coshi(bib U2b) cotdblb Uib) - 9.b12 U2b sinl~bi b U20)]

NxW= 9~2b X [- Ulb Sjnllb1b U2b) cotI'~bib 111b) + 9.b12 U2b cosh(blb U2b)1

b~(X 9b P1b~ U~)'2 U2b COSh(U2b(b2b - b Ib))1
N dx3 X) 1 b Xex pb2b u I) + Ulb Cot1~b b 11b) si1f 2b(b2b - bib))J

b~X i 2 if-± 9b3b13] U2b COSh(U2b(b2b - bib)) seclb Uib)
NaA)=91b ~ b2 -4b23 Cb13) Ulb cscF~blb Uib) U ib n Sfl4U2b~~ i)

+ +( b12 E-b13 + £b23) 113b secql~bb bb) ib
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[lIb eb13 - 9.2b £-b23) 4~3b COSh(b 2 b U2b) U2b
+ 9b+ 91b Eb12) 92b sinlhb 2b U~b) I

2 + E b12 + 9~b23 Eb13) U2b siflIblb U2b)1
Nbz3(x) X I (I - 9.b23 Eb23) Uib cosh(bib U2b) tan1~blb Ulb)J

l 1 b U2b COSh(U2b(b2b - bib))

+ ( b23 4b23) Ulb cosh(blb U2b) U b) si1 b U2bl+ -Eb12 + 4~b23 E-b13) U2b COtl~blb Ub ~nNb~ 2
*9~2b Ulb sifllU2b02b - bib))

E9-P1b Ebi3 + 9.2b Eb23) 9L3b siflhb2b U2b)1U~
+ (9~2b 9 .1b F-b12) 4~2b cosh(b2b U2b) jUb

b (XX2  + {(Eb1 2 9 b23 Eb13) U2b cosh(blb U2b)1
N,,3X 1 ( + Jgb23 4b23) Uib sifllblb U2b) tanF~blb Ulb)J

*lPb U2b cosh(U2b4b2b - bib))

+ ~(Eb12 - b2 Eb13) Ub cottbb Ul) COsh(blb U2b)l
9 J2b Ulb siflhU2b(b2b - bib))

+[93b UIb -91b Eb13 Uhbl Cosh2(U2b (b2b - bib))

Nd3? expb2b U3b, + [- 2b Ulb3 b + 93b 9b12 Eb12 Uhbl Sinh2 (U2b (b2b - bib))
+ [(I.3b Eb12-1.2b £bi3) cotIblb Uib) 1(93b 9b12 - 91b E-b23) tanI~blb Ulb)J
*Ulb U2b sin142 U2b (b2b - bib))
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DIX) =- g'al2 U2a + Ul a cot~bi a U Ia)

DajX) = EM1 U2a + Ula tan~bia Ula)

Ul a k , 2 = 2 2 M
kiaa k2a

e() gb3Ub+ Ulb cotl(bIbUlb) 11U2b cosh(U2b4b2b-bb)

+ IIJgb2Ub + g~b23U~bU3b CotlbUlb)l sinl4U20~2b - bib))

Db ,) rcbl3~b+ Uib tanI~blbUld) U2b COSh(U2b4b2b - bib))
+ [Ebl2Ub + £-b23UibU3b tan1~blbUib)] sin10~24~b2b - bib))

2 2 ,2 X 2
Uib kl Ib, U2b = - 4 b, U3b= - k3b

D.1 Green's Functions for Electric Fields From Electric Sources.

D.1 HED at interface 2a:

Gay'(R) = G axx(R)

G~2R .(2 ~ X [ U2a + 9&ai2 Ula tanFqbia ut a)] dX

4nrt-2. J DIX) Da4,%)

For large X, these integrands decay as V 112 .

D .1.1.1 Asymptotic forms for small R:

R~c

Gaxx(R) = 141j X. 2 2 (RXxX---L +-IA22 x i A2lRX) X -T ~ jR R I+L9a12
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Appendix D: Complete Green's Functions

Gq22(R)4e, , 4~2,(R, X) dX R R.i~ 1ox) + E,1

where A2(,)and Iq22(R,X) are the integrands of the original functions with H,,(XR)

replaced by bo,(XR).

D.1.2 HED at intrface 2b:

Gbx() (2(R U2b cosh(u2b (b2b - bib)) + tb3UbSfhUbbb-bi)

OZy (R) G Gxx(R)

Eb23 U~b U3b cosh2 (u2b (b2b - bib))

+ [9~b23 Uib U3b + (4b 12 Uhb + 9~b13 E-b23 Uhb~
* ulb taflbb Ulb)J

b~(R H (2 HJXR) X * sinh2(U2b (b2b - bib))
G 422(R) b D()) r(X) + [Uh + 9~b23 4b23 Uhb + (4~'13 + 4.b12 Eb23) dX

4n~b D , L*Ulb u3b tnlbu1b)

* 2b sinl(2 u2b (b2b - bIb))
2

+ A4b13 423 Ulb Uhb tanI~blb Ulb)
C

For large X, these integrands decay as X- 1/2.

bxx I~b( (2 __

G1 2 (R) = t- H0 J(XR) X ~bd
4n fcD~(X)

A3yy(R) = G bA (R)

( (1 [u3b + Abi Ulb tanl~blb Ulb)

blcFb3b ~+[9b13 Eb12 Uhb +(pGb23 - I.Lbi3 Ebi2) 11
+ Abi Ulb U3b tanllbbUb) J

ic sinU2b (b2b - bib))

For large X, these integrands decay as exp[-X (b2b -bilb)].
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D.1.2.1 Asymptotic forms for small R:

G2bxx (R= Itlb f I b + Lb23 JO(x) dxA 2 t 2no I,2,R, X) dX- + 9~b12 + LKt3 + 9lb13 R

+1 1+ .b23
R 1 + 9.bl2 + .b23 + 9b13

b 1 + Eb23 MJ0 dGq22(R 2lt2b(R X) - +bdE2+EiX o dx2-2+Eb,2 + Eb 3 + bf R

+1 1 + Eb23
R 1 + Cb12 + Eb23 + Ebl3

D.1.3 HED at interface 3b:

G bx (R) = 8 2 X) 9b ['12 U2b cOsh(U2b (b2b - bIb)) ]
A33 4 c D() I+ Ulb coth~blb Ulb) sinh(u2b (b2b - bib))

byy ()=Gbxx(R

GA33(R =A33(R

EU3b + .bi3 Ulb tanh~blb Ulb)1 u~ b
* cosh 2 (U2b (b2b - bib)) I

+ [(U21b + 9.b 12 Eb 12 Uhb) U3 b
L+ 9b23 Eb12 Ulb Uib coth~blb Ulb)

Gq33(R) = X__)_ Hb R X) * sinh 2(U2b (b2b- bib)) (
4 tCE3b D .X) D X) ~[}+b23 Ulb + 9b13 Eb12 Ub

[ + 92b12 tannbolb Ulb)!

P A2& sinh42 U2b (b2b - bib))
C 2

For large X, these integrands decay as X- 1/2.
G3Rbxx byy bxx

GA(R) = G (R) = G x(R)A23R A32(
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G =3R bq3(RX A - + Eb12 f OX Jox)
2nts3bJ 1+ Eb12 + rrb23 + Ebl3J Rd

+1 l+ bl2
R 1 + Eb12 + Eb23 + Cbl3

For large X, these integrands decay as exp[-X. (b2b -bib)].

D.1.3.J Asymptotic forms for small R:

GbxR L--iCI b Rkc

bxx( A3bJ I 3 (R,X) dX - +' t 1 O(x) dx
21E(R = 1 + 9bl2 + Pgb23 + I.b13 fo R

R 1 + Pgbl2 + g.b23 + 94bl1

Gq33(R) 2nr 3 bj Iq33(R, X) dX - I 12 + Ebl2 + Jol~ x) dx

+1 l+ Ebl2
R 1 + Ebl2 + Cb23 + Cbl31

D.2 Green's Functions for Magnetic Fields From Magnetic Sources.

D.2.1 HMD at interface la:

Gax(R) = la (2 JXR) X Ula + Ca12 U2a taflba Uia) d).Fl 41c cJ U Ia DaX)

GaY(R) = Gax(R)

(21(R L H(XR) X Egali2 + Eal2 Ua U2a + U a cotl~ba Ul a)1'(R HOI +2(-1 9a1Ea2)U 2aCSC(2 bla Ula)d)
4 7 1 L i j Uc L ) O rr * A . -+ g 'a l2 E a l 2 U h ta n l b a U a )

For large X, these integrands decay as X- 1/2.



Appendix D: Comnplete Green's Functions

D.2.1 .1 Asymptotic forms for small R:

Gax(R) =IA Iai (R~,X) d ox + }
Ga 1 1(R) 1 Iaf Xi 1 (R, X) dX - P" 4)d +A

D.2.2 HMD at interface Jb:

bxx1  ~H 2 ~(R) Ub + Eb13 U3b tan1~blb Ulb)]*U bCO,4- b b~b b)) C
Ulb x(R =bX (E23 b C~ +h (bU2b tn~l ~bl

*Sin4lU2b (b2b - bib))

GblI(R) = GF1 x(R)
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Gb ____ H,, (XR) X

Gin1 1(R = 4~bjUlb D,( ) DU)1
(- +~b3 b1 2Ub sI2ibUbUb[9lb13 Ulb U3b + Ulb cotl~blb Ulb)

+9Ib13 Eb13 U3b tanl~blb 111b)
2 2

+ Eb13 Ulb U2b U3b cosh (u2b(b2b - bib))

* + + (Uhb+ 9b23 Eb23 Uh) U2b co~b~b Ulb) dX
+ (-1 + 9~b12 4b12) Uhb + (J 413 Eb13 - 91b23 4b23) Uib)

2 2 ib CSCF2 bib 111b)

L+ 61i2 Eb12 Uhb + 4 1 3 Eb13 Uib) Uhb tafllblb Uth)

sinh 2(U2b(b2b - bib))

(I.Lb2 + 41~2) Ulb U2b + (9ib23 ELb13 + 9~b13 4b23) Ulb 113b
+ 92 23) Ulb u3b cotb13 Ulb) 22Ubcc~ i i

+ (- b23 + b1 b1+9b2F13-4 ) 2 uotI cs42b1b Ulb)

L+ (9ib13 Eb12 + 912 43) Uh u3b tanlb 111b)
!!U2b sinI42 u2b(b2b - bib)
2

For large X, these integrands decay as X- 112.

D.2.2.1 A symptotic forms for small R:

D.3 Green's Functions for Electric Fields From Magnetic Sources.

D.3.1 HMD at interface la:

E21(R,) - sir(2 ) [ I~ R a2 a21()

GE2(R, ) I'IR). - os I' (R) + cos(2 ) 1112(R)]
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GE21(R,) -- [I' 1 (R) + sinj ) Ji(R) + cos(2 ) 1I (R)]

G~(R, )=-s4 [-raj)I (R j

where

I 1r) (2 (- 9a12 Ea12) sech~bia Uia) d
a2 1( R) o J R) " (I D IX) D aj k)

is1 R H (2 (XR) ), 2 (1 - Aia12 E.12) secl(biaUa i

it 1 R ( H 2~( EMa1 U2a sech~bla Uia)

a~()fc OJR DaJX)

For large X, these integrands, decay as exp[-X bila].

D.3.2 HMD at interface Ib:

= -siri2~) Ib2l(R) - Isb2l(R)]

E2 I (R, lb2 I(R) - COSI 0 Ii,21 (R) + cos(2C) 1',21(R)]

G2R, = - [Ib,21(R) + sinNC) I 2 (r) o(~ ~ 2 ()

by R )= - s i 2 ) [- L, Ir 21(R) + s2(

where
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Appendix D: Complete Green's Functions

I 2 (r) H"2 %R) A. secY(bb u,,)

I(1 - u9b13 Eb13) U~b
+ 4( 1 12 Eb12) U2b + (- 9b13 F-b13 + 9Jb23 Eb23) Ub

**sinh 2(U2 b (b2b - bib)) dIX
S+ [9tb23 - 9.b13 Eb12 - 4Lb12 Eb13 + Eb23]

*U2b U3b sin(2 u2b (b2b -bb))

is2 R H, XR secl(blb Ulb)
fA R D,()~X

((-4~13 4b13) U~b)+ [(1 - 9~b12 Eb12) Uib + (- 9b13 Eb13 + J b23 b2)Uib1]
**sinh 2 (u2b (b2b - bib)) dX'+ [9±b23 - 9~b13 Eb12 - 4~b12 Eb13 + Eb23l

*U2b U3b sinN2 u2b (b2b -b1b))

it 2 (R H (2 Hg XR) X' u,, secl~blb Uib) 41b3 u~b cosh(U2b (b2b - bib))

b~(R =DI' X) I+ Eb1 u2b siflh(U2b (b2b - bib) d

For large X', these integrands decay as exp[-X bibi.

GE31R, )= - sir42 )[I Ib,3 1 (R) - slR]

GE31R, )= - [- 4,b 1(R) - COSN ) Ib,31(R) + cos(2 ) Ibs31(R)]

GE1 = - [Ii,31(R) + sinN ) I 31(R) +cos(2 )lIs3l(R)]

-y(R si2) I3IR I'b3 (R)]

where

Ir (2JXR X [I - 9b13 Eb3] Uib secl~bIb Ub) cosh(u2b (b2b - bb))~
0 I(R) 0 +) 14(rb12 - 9.b23 4l3) Ulb u2b csch(blb Ulb)Ud

1b~iI\)- D~(X D~4) I+ (- 4~b12 Eb13 + 4b23) U2b u3b secF~blb UIb)
_(X) 4k) sifllU2I, (b2b - bib))
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(2X)X2 ([1 - 41b3 Eb13l u2 secibl1b Ulb) cohu(b2b - bib))l

Ib31(R) =~ ~ X) /+[(P-b12 - 4b23 4b13) Ulb u2b csch(blb Ulb) d%
R + (- 9.b12 £-b13 + Eb23) U2b U3b secl~blb UI b)J

Df(X R D6W ,4) *sifl~U2b (b2b - bib))

Ib3 I(R) = (H - R) DIV [Ebl3 u3b secl~blb Ulb)] dX

For large X, these integrands decay as exp[-X~ b Ib].

D.4 Green's Functions for Magnetic Fields From Electric Sources.

D.4.1 HED at interface 2a:

Ga~xlx(R, C) = sin(2C) [I 4~12(R) - Isa12(R)

GH1(R C =[I 2(R) - COSIC) Ial2(R) + cos(2C) is1 ()

GH1(R ) =[-IIO() +sinj ) J 12(R) +cos(2 ) 11 2()]

Gayy1(RC) =si(2C) [- j I'a12(R) +Isl(

where

I 1 (r) (2 H,(X3 (I - 9~a12 Ea12) secl a UI a) dXa2()=fOJ XR DIX) D aX)

is H'' R) (I - N'12 Ea12) secI~bia U1.) d1a12(R) = fc RDIX) DU~X)

I t H(2 JR) XUI aCSCl~bia UI a)

Ia12(R) = Jc H02 (R l DIX) dX

For large X, these integrands decay as exp[-X bilal.
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D.4.2 HED at interface 2b:

G 12(R, ) = sin(2 ) [I IT 12(R) - I',12(R)]

GbXz(R, ) =[1'1 2(R) - cosJ{) IT12(R) + cos(2;) I ,12(R)]
bxy j I

Gmz12(R,) [- Ib 12(R) + sin ()I1 12(R) + cos(2) Is 12(R)]
Gbyy (R i2) f ()+Is I2(R]

H2 = sin(2;)[- 2 I 12(R)+

where

(2 X3 9b13 4b31 U2b sech~blb Ulb) 2

IT  H (XR) + 3 j+(ltb12 Ebl2) Ub + (- .Lb13 Eb13 + ib23 Eb23) U3b]

Db(x) Dx) * sechqbib Ulb) sinh (u2b(b2b - bib))
+ [9tb23 - I'b13 £b12 - 9b12 £b13 + £b231
U2b U3b sech~blb Ulb) sinh(2 U2b(b2b - bib))

([1- 1b13 £b13] Ub sech~blb Ulb)

is(R) H12 XR) 2  j+[(1 - 9b12 6b12) Ub + (- 9b13 Eb13 + 9b23 Eb23)U3b
R De(X) D124) * sech~blb Ulb) sinh (u2b(b2b - bib)) dl

+ [9b23 - 93b13 Eb12 - 9.-b12 Eb13 + Eb231

U2b U3b sech(bib Ulb) sinh(2 U2b(b2b - bib))C 2
(22

E (HOUR Uib U2b COSh(U2b (b2b -bib)) 1

l I 2(0R)R) =l &uz coIz bm- b I b)] csch~b~b Ub) dX

iJ, = D (X) + 9b23 U3b si nhU2b(b2b -

For large X, these integrands decay as exp[-X bib].

D.4.3 HED at interface 3b:
bxx

GH,3(R,;) = sin(2;)[-L IbI3(R) -i 3(R

G(R,;= [I'I 3(R) - cos() I 13(R) + cos(2;) Ib13(R)]
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GBR = [- Ib,13(R) +sinN ) I ,(R) +cos(2 ) I413(R)I

by R sin(2 )[ I'13R +I'1(

where

f (2 X3 ID([ - 9-bi3 Ebi3] U2b COSh(U2b(b2b - bib)) sech~bib Ulb)~
Ir H0 'JG) U2b J~[(Eb12 - 9b23 4b13) Ulb CSCh(bib Ulb) d

0%() D~()~ sifh(U2b(b2b -bb)) Ubsc~l l

(H2 ~(RX 2  (D-91 11Ub C~hu b i-bb)) sech(bb Ub)~
IS Hi IXR) Ub 1+ (412 - b3 £b23) lcshb U)

Rf I~x ~ * sinh(U2 0~ 2 b -bib)) UbSc~i li d

I t H (2 JXR) X U 2b csch(bib ubb~13(R) f c (R Ui POX) Ub

For large X, these integrands decay as expll-% bibi.
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y Ijcodib f =Gajl' HTijp') ds'

+ ij ii [G al1(Pt Ip') - G aII(pi-p) i'(' s

4j22= ~ ~ ~ ~Oj dlj~p' j A2(s) T'p s

y 10di Gq22PfIP -pp' GT(p~')] f(')ds

+j1a b2
1  G l(p~ilp,) - G bj(p- ip,)] n2jj(p') ds'

,j tj[2(plp) - G,(P~I')] ds' () s

z13  _f di. t J . 2iGA22(plp). T2j(P') &s

+T- [b~p~I - G b 2(piIP')] l2j(P') ds'
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433 =j dl. f GA33plp). T3 j(p')ds

+ jioa4 3j [G q33(P3ilp') - Gq33(P~ilP')1 rI3j(P') ds'

&~j2 
= f0 di- j 'G12(p lp). Tfj(p') ds'

cIj 1  ('I 1J dl Ij21(plp). Tjj(P') ds'

& 12 = L(JOh dli. 1(pp.TJ~' s

=jtj i . 1(PIp'). T3j(p') ds'

=jLQ- dl- fGE21(plp). T1j(p')ds'

=j (: . G E31(p p) T i (p') ds'
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A description of the programs and subroutines developed during this research are

presented in this appendix. All practical numerical integration routines were accom-

plished in Fortran 77 on an ELXSI System 6400 computer with EMBOS 13, running

under the UNIX operating system. Copies of the actual Fortran code may be obtained by

contacting

Maj Harry Barksdale
AFIT/EN
Wright-Patterson AFB, OH
45433

Routines written in Mathematica for the graphical display of data are also presented in

this appendix. The Mathematica routines were developed on a Macintosh SE/30

personal computer, but should operate without modification in Mathematica running on

any platform.

F.1 GREENMAIN

GREENMAIN is the main program used to numerically solve the integrals in the

Green's functions G,.(R), Gq22(R), GA(R), Gq23(R), GE2(R,O), and GE2(R,). All

material parameters of the antenna (thickness, permeability, and permittivity of the

dielectric layers, observation frequency, etc.) are set in GREENMAIN. The critical
bxxb

point, Xc, for the asymptotic expressions of GA22(R) and Gq22(R) are found and the

integrations in the asymptotic expressions are numerically evaluated for a number of

points of R determined by the user. IMSL subroutines along with custom written

subroutines are then used to evaluate the integrals in the Green's functions. The non-
bxxb

asymptotic expressions for GA22(R) and Gq22(R) are evaluated for a predefined number of

bxx b IR
points. The functions GA23(R) and Gq2(R), and the component functions I 2 1(R), Ib2 l(R)
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and I'b21(R) of and GE21(R,C) are then evaluated. The values calculated along

with their relative errors are written to external files.

F.2 SUBROUTINES

The following subroutines are called by GREENMAIN or other subroutines:

dzbren - IMSL subroutine used to find the root of DlJX).

dqdagp - IMSL numerical integration subroutine.

dqdags - IMSL numerical integration subroutine.

asylimit - used to find the critical value Xc for the asymptotic expressions of
bxx b

GA22(R) and GqI(R). inputs: external function, initial guess for Xc' stopping

tolerance for result. Output: Xc.

chunk - Estimates the integral of a function that oscillates with a Bessel function

of the first kind from a to b by integrating over finite intervals between a

and b and summing the results. Inputs: external function, a, b, constant mul-

tiplied to variable of integration in the Bessel function, maximum relative

error allowed. Outputs: estimate of integral, estimate of absolute error. Calls

subroutine dqdags.

bavg - Estimates the integral of an algebraically or exponentially decaying

function that oscillates with a Bessel function of the first kind. Numerically

integrates function over an interval with a user defined starting point to

infinity using the Method of Averages. Inputs: external function, order of

Bessel function, rate of decay for algebraically decaying function, scale factor

if exponentially decaying function, starting point, maximum relative error

allowed. Outputs: estimate of integral, estimate of absolute error. Calls

subroutine dqdag (IMSL).
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singular - Estimates the integral of a function over the user defined interval a to

b, with an integrable singularity singularity within the interval. Inputs:

external function, a, b, free-space wave number k0, location of the

singularity, symmetrical interval around the singularity to use in cauchy,

maximum relative error allowed. Outputs: estimate of integral, estimate of

absolute error. Calls subroutines dqdagp, dqdag, and cauchy.

cauchy - Estimates the Cauchy principle value integral of a function over a

symmetrical interval about the singularity. Inputs: external function, location

of the singularity, distance around the singularity used to define the

symmetrical interval, maximum relative error allowed. Outputs: estimate of

integral, estimate of absolute error. Calls subroutine dqdag.

infintegral - Estimates the integral of an exponentially decaying function from a

user defined starting point to infinity by integrating over finite intervals and

summing the results until the desired relative accuracy is reached. Inputs:

external function, starting point, maximum relative error allowed. Outputs:

estimate of integral, estimate of absolute error. Call subroutine dqdags.

F.3 EXTFUNCS

EXTFUNCS is a file containing the Fortran implementation of the integrands for

the various Green's functions and all other non-IMSL functions used in GREENMAIN

and in other functions in this file. The text names of the functions were given to corre-

spond as closely as possible to the mathematical function names given in the previous

chapters. The following functions are contained in EXTFUNCS:

zsinh(x), zcosh(x), and ztanh(x) - double complex functions of the respective hy-

perbolic functions where x is also double complex.
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ulb(x), u2b(x), and u3b(x) - double complex representations of ulb(x), u2b(x),

and u3b(x), respectively, where x is also double complex. These functions re-

quire the constant klb, k2b and k3b.

quaddist(i, n, rmin, rmax) - double precision function that returns value for ith

point in quadratic distribution of n points between rmin and rmax.

deb(x) - double complex representation of 4(x) where x is double precision.

Function requires constants Lb12, 9b23, 4bl 3 , bib, tb and external functions

ulb(x), u2b(x), u3b(x), zsinh(x), zcosh(x) and ztanh(x).

bdmb(x) - double complex representation of dm(x) where x is double precision.

Function requires constants Ebl2, Eb23, Eb13' blb, tb and external functions

ulb(x), u2b(x), u3b(x), zsinh(x), zcosh(x) and ztanh(x).

bimagdmb(x) - double precision representation of imaginary part of dm(x) where x

is double precision. Function requires constants Ebl2, Eb23, Eb13, bib, tb

and external functions ulb(x), u2b(x), u3b(x), zsinh(x), zcosh(x) and

ztanh(x).
€bxx

ngba22(x) - double precision numerator of the integrand in GA22 where x is dou-

ble precision. Function requires constants 9'b23, tb, r and external functions

u2b(x), u3b(x), zsinh(x), zcosh(x) and IMSL function dbsjO.
€bxx

realgba22(x) - double precision function of the real part of the integrand in GA22

where x is double precision. Function requires external functions ngba22(x)

and deb(x).

imaggba22(x) - double precision function of the imaginary part of the integrand

bxxin GA2 2 where x is double precision. Function requires external functions

ngba22(x) and deb(x).

bxxasygba22(x) - double precision function the real part of the integrand in GA2

minus the limiting value, where x is double precision. This function is used to
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find the critical value for the asymptotic expression of A22. Function

requires constants 9b23 and tb and external functions u2b(x), u3b(x),

zsinh(x), zcosh(x) and deb(x).

ngbq22(x) - double precision function of the non-singular part of the integrand in
b0 q22 where x is double precision. Function requires constants 9b12' 9b23'

4'b13' Cb12, Eb23, b13' bib, tb, r and external functions ulb(x), u2b(x),

u3b(x), zsinh(x), zcosh(x), ztanh(x), deb(x), and IMSL function dbsjO.
b

realgbq22(x) - double precision function of the real part of the integrand in Gq22

where x is double precision. Requires external functions ngbq22(x) and

dmb(x).

imaggbq22(x) - double precision function of the imaginary part of the integrand
b

in Gq22 where x is double precision. Requires external functions ngbq22(x)

and dmb(x).
b

asygbq22(x) - double precision function the real part of the integrand in Gq22

minus the limiting value, where x is double precision. This function is used to
b

find the critical value for the asymptotic expression of Gq22 . Function

requires constants 412' 423' %b3' 9 b12, Eb23, Cbl3, bib, tb and external

functions ulb(x), u2b(x), u3b(x), zsinh(x), zcosh(x), ztanh(x), deb(x), and

IMSL function dbsjO.
rbxx,

ngba23a(x) - double precision function of the numerator ofthe integrand in GA2

where x is double precision. Function requires r, external function u2b(x) and

IMSL function dbsjO.
rbxx

realgba23(x) - double precision function of the real part of the integrand in GA23

where x is double precision. Requires external functions ngba23a(x) and

deb(x).
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imaggba23(x) - double precision function of the imaginary part of the integrand

bxxin GA 23 where x is double precision. Requires external functions ngba23a(x)

and deb(x).

ngbq23(x) - double precision function of the non-singular part of the integrand in
b

Gq23 where x is double precision. Function requires constants bl 2 , 9b23,

9b13' Eb12, £b12, £b23, £b13, blb, tb, r and external functions ulb(x), u2b(x),

u3b(x), zsinh(x), zcosh(x), ztanh(x), deb(x), and IMSL function dbsjO.

realgbq23(x) - double precision function of the real part of the integrand in Gb23

where x is double precision. Requires external functions ngbq23(x) and

dmb(x).

imaggbq23(x) - double precision function of the imaginary part of the integrand
b

in Gq23 where x is double precision. Requires external functions ngbq23(x)

and dmb(x).

nibr2l(x) - double precision function of the non-singular part of the integrand in

Ib21 where x is double precision. Function requires constants bl 2 , 9b23,

9bl3' "b12, Eb12, £b23, £b13, bIb, tb, r and external functions ulb(x), u2b(x),

u3b(x), zsinh(x), zcosh(x), deb(x), and IMSL function dbsjO.

realibr2l(x) - double precision function of the real part of the integrand in Ib21

where x is double precision. Requires external functions nibr2l(x) and

dmb(x).

imagibr21(x) - double precision function of the imaginary part of the integrand in

Ib21 where x is double precision. Requires external functions nibr2l(x) and

dmb(x).

nibs2l(x) - double precision function of the non-singular part of the integrand in

Ib21 where x is double precision. Function requires constants Ab1 2 , 9b23,

b13' £b12, Ebl2, £b23, b13, bib, tb, r and external functions ulb(x), u2b(x),
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u3b(x), zsinh(x), zcosh(x), deb(x), and IMSL function dbsj .

realibs21(x) - double precision function of the real part of the integrand in Is 2l

where x is double precision. Requires external functions nibs2l (x) and

dmb(x).

imagibs2 1(x) - double precision function of the imaginary part of the integrand in

Ib21 where x is double precision. Requires external functions nibs2l(x) and

dmb(x).

nibt2l(x) - double precision function of the non-singular part of the integrand in

I21 where x is double precision. Function requires constants £b12' %b12,

eb23, eb13, bib, tb, r and external functions ulb(x), u2b(x), u3b(x), zsinh(x),

zcosh(x), and IMSL function dbsjO.

realibt2l(x) - double precision function of the real part of the integrand in I21

where x is double precision. Requires external functions nibt21(x) and

dmb(x).

imagibt2l(x) - double precision function of the imaginary part of the integrand in

I21 where x is double precision. Requires external functions nibt2l(x) and

dmb(x).

F.4 Test Programs

The following programs were used to test the cauchy and bavg subroutines on

functions with known solutions. Outputs appear after each program listing.

F.4.1 Test Program I

double precision f,a,b,pole,delta,errabs,errrel, result,
& errest,total,totalerror, exact, error

c
external f, dqdaga, cauchy

c

a-O.O
b-3.0
pole-1.0
delta-O, 1
errabs-O.0
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e rrrel-le-6
C

exact-i .45059

call dqdags (f, a,pole-delta,errabs,errrel, result, errest)
total-result
totalerror-errest
call dqdags (f, pole+delta,b,errabs,errrel, result, errest)
total-total+result
totalerror-totalerror+errest
call cauchy (f,pole, delta,errrel, result,errest)
total-total+result
totalerror-totalerror+errest
error-dabs (exact-total)

C

write (*,10) total,exact,totalerror, error
10 format(' Computed -',flO.8,13x,' Exact = ',fl0.8//

&' Error estimate -',lpel5.8,3x,'Error - ',lpel5.8)
end

double precision function f(x)
double precision x
f-dsin (x) /(x-l)
return
end

Computed = 1.45058958 Exact - 1.45059000

Error estimate - 1.46218567E-07 Error = 4.23679505E-07

F.4.2 Test Program 2

integer order
c

double precision dbsj0, alpha, beta, start,errrel, result,
& errest, exact, error, r

c
external dbs jO, bavg

c
common r
r-l.OdO

c
order-0
alpha--0 . dO
beta-0.0
3tart-O .0
errrel-le-6

c
exact- . OdO

c
call bavg (dbaj0,order,alpha,beta, start, errrel, result,

& errest)
error-dabs (exact-result)

c
write (*, 10) result,exact,errest, error

10 format(' Computed - ',flO.8,13x,' Exact - ',f10.8//
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4'Error estimate - ',lpe!5.8,3x,'Error - ',lpel5.8)
end

Computed - 1.00000000 Exact - 1.00000000

Error estimate - 4.44089210E-16 Error - 1.77635684E-15

F.4.3 Test Program 3

integer order
C

double precision f, alpha, beta, start, errrel, result,
& errest,exact,error, r

C

external f,bavg
C

cormmon r
r-l.OdO

C

order-0
alpha-0
beta-1.0
start-0. 0
errrel-le-6

C

exact-l/dsqrt (1 .0+r**2)

C

call bavg (f,order,alpba,beta, start, errrel, result,
&errest)

error-dabs (exact-result)
c

write (*, 10) result, exact, errest, error
10 format(' Computed -',flO.8,13x,' Exact -',flO.8//

' Error estimate -',lpel5.8,3x,'Error - ,lpel5.8)
end

double precision function f(x)
double precision x,r,dbsjO
external dbsjO
common r
f-dexp (-x) *dbsj0 (r*x)
return
end

Computed - .70710678 Exact - .70710678

Error estimate - .OOOOOOOOE+00 Error - 3.33066907E-16

F.5 Mathematica Programs

The Mathematica package vectorPlot.m was used to generate the vector plots in

chapter IV. The package polyAvg.m was used to perform the polynomial average
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interpolation necessary to obtain the data for the vector plots.

F.5.1 Mathematica Package vectorPlot.m

vectorPlot: :usage="vectorPlot[data,size] plots the
relative magnitude and direction of discrete data
points using arrows to represent the output. The
input 'data' has the form

{{{xl,yl,xmag,ymag),{x2,yl,xag,ymag},...),
{{xl,y2,xmag,ymag), {x2,y2,xmag,ymag}, ... ), . . . }

xnag and ymag represent the x and y components of the
vector at position x, y. The input 'size' has the
form

{dx, dy)

where dx and dy are the x and y separations between
data points in the x and y directions, respectively."

vectorPlot[data ,size ]:=
Block [ {vector, number, vlength, x, xmin, xmax, y, ymin, ymax,
mag, angle, head=0.728869, thead=0.3, a, b, c, d, arrows),

vector=Flatten [data, 1];
(* Find the total number of data points *);
number=Length [vector];
(* Determine the maximum physical half length of
a vector *);

vlength=Min [size]/2//N;
(* Extract the x-coordinates and find the minimum
and maximum values *);

x--Transpose [vector] [[1]];
xmin=Min [x];
xmax=Max [x];
(* Extract the y-coordinates and find the minimum
and maximum values *);

y--Transpose [vector] [[2]];
ymin-4in [y] ;
ymaxot-ax (y] ;
(* Calculate the vector magnitudes and normalize
to the largest value *);

magqTable[Sqrt[vector[ [i, 3] ] A2+vector[ [i, 4]] A2]//N,
{i, number)];

mag=mag/Max [mag];
(* Calculate the angular direction of the vectors *);
angle-Table[If [ ( (vector[ [i,3] ]-O)

&& (vector[ [i, 4] ]0) ), 0,
ArcTan[vector[[i,3]],vector[[i,4]]]//N],
{i,number}];
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(Calculate the head and tail (a and b) coordinates
of the arrow shafts *);

a=-Table[{x[[iJJ+vlength*mag[[il]*Cos~angle[[i]]],
y[[i]]+vlength*mag[[i]J*Sin~angle[[i]]J},
{i,nuxober)];

b=-Table[{x[[i]]-vlength*mag[[i]]*Cos[angle[[i]]],
y[[i]]-vlength*mag[[i]]*Sin~angle([iJ3J),
{i,number)];

(c and d along with a determine the coordinates
of the arrow head *);
c=Table ({x([iJ 3+vlength*mag (il] *head*

Cos [angle( [iJ I+thead],
y( (iJ +vlength*mag[ [i]]3*head*
Sin (angle[[ iJ 3+theadJ),
{i,number)];

d=Table [{x [[i]]I+vlength*mag[[ iJ 3*head*
Cos (angle ([i]]-thead],
y ([iji +vlength*mag [[iJ I*head*
Sin (angle[[ iJ 3-thead]),
i, number)];

(arrows contains the locations and orientations of
all the graphics primitives necessary to draw all
the vectors *);

arrows=Table[{Line[{a[[iJJ,b[[i])]},
Polygon[{a[[iJ],c[[i]],d[(i]J)]),
{i,number)];

Show[Graphics[({Thickness[1/800],
Line[{{xmin-size[[lJJ/2,ymin-size((2]]/2),
{xmax+size [[1]] /2, ymin-size ([2] 3/2),
{(anax+size [(133/2, ymax+size [[233/2),
{(anin-size([l] ]/2,ymax+size( [2]]/2),

Aspect~at io->Automatic 3]

F.5.2 Mathemauica Package polyAvg.m

polyAvg::usage="polyAvg [data, x] returns the polynomial
average for x of data."

polyAvg[data_,x ]:in

l=Length[data];

il=i2-1;
Which [il=1,

f=Fit[data[ [Range[1,31 ,Range[1,21 3],
{1,xl,xlA2),xl];

outl-f/ .xl->x;
out2=outl,
i2-1,
f=Fit[data[ [Range[1-2, 1] ,Range[1, 2]]],
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out2=f/ .xl->x; 
(,lx^1x]

out 1=out2,
True,
f=Fit [data[ [Range[il-1, i2] ,Range[1, 2]]),

outl=f/ .xl->x; 
{,lx^1x]

f=Fit (data[ [Range [ii, i2+1] ,Range [1,2]]],

out2=f/.xl->x 
(,lx^)x]

Return[ (outl+out2) /2]
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7'5 Abstract

A theoretical model for the analysis of an aperture fed stacked-patch microstrip

antenna is presented. The mixed potential integral equation approach (MPIE) is used.

The aperture is closed by using opposing magnetic currents on each side of the ground

plane. The necessary Green's functions associated with the vector and scalar potentials

are evaluated in the spatial domain using stratified media theory. The Green's functions

are expressed as Sommerfeld integrals. A method of moments technique to solve for the

currents of the antenna is outlined. Basis and test functions are found to use with the

Green's functions in the MPIEs to form a solution matrix. No actual solutions for the

currents are calculated.

The Sommerfeld integrals in the Green's functions are analyzed to determine

their characteristics. These characteristics include complex, oscillatory integrands; sin-

gularities; surface waves; and semi-infinite integration intervals. Several numerical inte-

gration techniques to deal with these characteristics are developed. Both Fortran code

and Mathematica packages written to implement these techniques are discussed.

Example calculations for several of the Green's functions are accomplished. The

cut-off frequencies for the surface waves are evaluated and it is shown that with a proper

choice of material parameters only one surface wave mode will propagate. The Green's

functions are then evaluated accurately and efficiently with sample results provided.

Ideas for continued research and new applications are discussed. / ',
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